
Master of Science in

Information and Computer

Sciences

University of Luxembourg

Integer Linear Programming: Introduction to
Branch & Bound

Dr. Gwen Maudet
 october 2025

maximize z = 2x1 + x2

subject to 6x1 + 5x2 ≤ 23

 8x1 + 3x2 ≤ 19

 x1, x2 ≥ 0

 x1, x2 ∈

Set of integer solutions

Example

Divide step 1

• The best solution of 𝑃0 is X1=1.182 , X2=3.182.

• Divide 𝑃0 according to variable 𝑥1. Solve graphically the subproblems
𝑃00 and 𝑃01.

• 𝑓(𝑥∗) = 5 𝑃0, 𝑓 𝑥00 = 5.4

𝑃00, 𝑓 𝑥00 = 5.4

Non integer solution

Integer solution

𝑃01, 𝑓 𝑥01 = 5

Split x1

Divide step 2

• The best solution of 𝑃00 is x1=1, x2=3.4

• Divide 𝑃00 according to variable 𝑥2. Solve graphically the subproblems
𝑃000 and 𝑃001.

• 𝑓(𝑥∗) = 5 𝑃0

𝑃00, 𝑓 𝑥00 = 5.4

Non integer solution

Integer solution

𝑃01, 𝑓 𝑥01 = 5

𝑃000, 𝑓 𝑥000 = 5
𝑃00, 𝑓 𝑥00 = 5

Split x1

Split x2

Optimal solution graphically

Set of integer solutions

One optimal solution

Going Deeper in Branch and
Bound

Different branching, searching strategies

From Constraint Integer Programming, Achterberg, PhD thesis, 2007[1]

[1]: Achterberg, Constraint Integer Programming, 2007, PhD thesis

Recap about the B&B tree

Recap about the B&B tree

Recap about the B&B tree

Recap about the B&B tree

• Relaxed solutions (LB, UB) always get bigger from a parent to a child
in minimization problem : → less solutions so poorer solutions

• When you branch on a variable, the children will respect for sure
𝑥𝑖

𝑘 ≤ 𝑥𝑖
𝑘 and 𝑥𝑖

𝑘 ≤ 𝑥𝑖
𝑘

• If solution is integer, then the subproblem is solved

Branching

Branching Strategies

Answer the question: which variable to select to split one problem into
2 subproblems?

• The objective is to have the highest lower bound on both side of a
child= the best approximation of optimal solution of the subproblem

→good approximation = good pruning possibilities.

In [1], show that a random branching can lead to ~+200% of solving
time compared to a tuned one.

[1]: Achterberg, Constraint Integer Programming, 2007, PhD thesis

Branching Strategies: most infeasible
Consider a subproblem 𝑃𝑘, non integer solution 𝑥𝑘, Ik = ሼ

ȁ
𝑖 ∈

1, 𝑛 𝑥𝑖
𝑘 ∉ ℕ}

For one solution candidate 𝑥𝑖
𝑘, it fractional parts are 𝑓𝑖−

𝑘 = 𝑥𝑖
𝑘 − 𝑥𝑖

𝑘
and 𝑓𝑖+

𝑘 = 𝑥𝑖
𝑘 −𝑥𝑖

𝑘

• Known one: variable the closest to 0.5: max
𝑖∈𝐼𝑘

(min(𝑓𝑖−
𝑘 , 𝑓𝑖+

𝑘))

→ in practice not used because not significantly better than random.

Branching Strategies: strong branching

Consider a subproblem 𝑃𝑘, non integer solution 𝑥𝑘, Ik = 𝑖 ∈ 1, 𝑛 𝑥𝑖
𝑘 ∉

ℕ}.
The trick: doing the branching for each variable, and compare the increasing
in the lower bound → tighter lower bound for a same optimal solution
→better chance of pruning

For 𝑖 ∈ I𝑘, 𝑃𝑘 leads to 𝑃𝑖−
𝑘 and 𝑃𝑖+

𝑘 , with improvement of the LB being Δ𝑖−
𝑘

for 𝑃𝑖−
𝑘 and Δ𝑖+

𝑘 for 𝑃𝑖+
𝑘 . We want the variable that maximizes the increase of

lower bound
 One way is:

max
𝑖∈𝐼𝑘

(Δ𝑖−
𝑘 × Δ𝑖+

𝑘)

Drawback: doing the branching for each candidate then computing the LB is
really expensive

Branching Strategies: Pseudo Cost
Consider a subproblem 𝑃𝑘, non integer solution 𝑥𝑘, Ik = 𝑖 ∈ 1, 𝑛 𝑥𝑖

𝑘 ∉
ℕ}
The trick: instead of computing the improvement of the lower bound for
each case, just use experience and approximate it!
Consider for one variable 𝑥𝑖, and 𝜇𝑖 being the number of time it has been
used for branching already in other parts of the tree, each time 𝑃𝑙 to 𝑃𝑖−

𝑙
being Δ𝑖−

𝑙 and Δ𝑖+
𝑙 for 𝑃𝑖+

𝑙 ; from this experience,
Δ𝑖.

𝑙

𝑓𝑖.
𝑙 the LB gain per fractional

part. The mean increasing of LB per fractional is 𝜑𝑖− =
∑

Δ𝑖−
𝑙

𝑓𝑖−
𝑙

𝜇𝑖
 and 𝜑𝑖+ =

∑
Δ𝑖+

𝑙

𝑓𝑖+
𝑙

𝜇𝑖
.

• Then the pseudo cost for one variable candidate 𝑥𝑖 is
𝜑𝑖− × 𝑓𝑖−

𝑘 × 𝜑𝑖+ × 𝑓𝑖+
𝑘

We then choose the variable that maximizes the pseudo cost.
→no need for extra computations: more lightweight

Branching Strategies: hybrid

• Pseudo cost is a good approximation, but can’t be used at the beginning

• Strong branching is expensive but the the best choices to make + choices at
the beginning of the solving are the mot important

• → In modern solvers (like SCIP open source solver), hybrid approach:
• Use strong branching when the dept is lower than 10

• Else, use pseudo-cost

It exist many other fin tuning for quantifying the quality of a variable for
branching….

Searching

Search strategy

Answer the question: according to a set of unsolved subproblems,
which one to solve the first?

The objective is to explore the node (or subproblem) that leads to the
best solution.

2 components:

• Node comparing method: how to quantify the quality of a node

• Node selection method: which node will be explored in the end

Search Strategy: LB node comparing

• The objective is to rank open subproblems of the tree search. Usually,
a score is given to all node, to then define the ranking.

• Lower Bound(LB): the lower bound on the node can be an estimation
of how will be the integer solution of the subproblem: 𝑒𝐿𝐵(𝑃𝑘) =
𝑓(𝑥𝑘)

Search Strategy: BP node comparing

• The objective is to rank open subproblems of the tree search. Usually,
a score is given to all node, to then define the ranking.

• Best projection (BP): consider 𝜙(𝑥𝑘) = ∑𝑖=1
𝑛 min(𝑓𝑖−

𝑘 , 𝑓𝑖+
𝑘) the

distance to the closest integer solution.

𝑒𝐵𝑃 = 𝑓(𝑥𝑘) +
(𝑓(𝑥∗) − 𝑓(𝑥0))

𝜙(𝑥0)
𝜙(𝑥𝑘)

increase of the score per
fractional unit

Search Strategy: BE node comparing

• The objective is to rank open subproblems of the tree search. Usually,
a score is given to all node, to then define the ranking.

• Best Estimate (BE): use the estimator of increasing of the LB according
to the experience 𝜑𝑖− 𝜑𝑖+.

𝑒𝐵𝐸 = 𝑓(𝑥𝑘) + ෍

𝑖

min(𝜑𝑖−𝑓𝑖−
𝑘 , 𝜑𝑖+𝑓𝑖+

𝑘)

Search Strategy: node selection

There is a total ranking of all the open nodes. Which one to select the
first:

• Best First Search (BFS): select the best one

→advantage: if the ranking is accurate, the best choice is the best node

• Dept First Search (DFS): according to the node explored, select the
best child; if children are completed, get the closest ancestor.

→advantage: DFS is the fastest way to have one feasible solution

+in practice, the search tree can be big (exponential), and DFS allow to
minimize the number of open nodes

Search Strategy: node selection

• Hybrid version
• As long as the children are unprocessed, do DFS. When you reach integer

solutions, you select the next node by BFS, and then from that node on, you
do again DFS.

• →plunging to integer solution but do not get stuck in part of the tree

• Condition can be given to stop the DFS even before finding a good solution: if
the score is too far from the best score, then switch again to BFS.

Exercices

University of Luxembourg Merci | Thank you | Danke

	Slide 1
	Slide 2: Example
	Slide 3: Divide step 1
	Slide 4
	Slide 5: Divide step 2
	Slide 6
	Slide 7: Optimal solution graphically
	Slide 8: Going Deeper in Branch and Bound
	Slide 9: Recap about the B&B tree
	Slide 10: Recap about the B&B tree
	Slide 11: Recap about the B&B tree
	Slide 12: Recap about the B&B tree
	Slide 13: Branching
	Slide 14: Branching Strategies
	Slide 15: Branching Strategies: most infeasible
	Slide 16: Branching Strategies: strong branching
	Slide 17: Branching Strategies: Pseudo Cost
	Slide 18: Branching Strategies: hybrid
	Slide 19: Searching
	Slide 20: Search strategy
	Slide 21: Search Strategy: LB node comparing
	Slide 22: Search Strategy: BP node comparing
	Slide 23: Search Strategy: BE node comparing
	Slide 24: Search Strategy: node selection
	Slide 25: Search Strategy: node selection
	Slide 26: Exercices
	Slide 27

