Dr. Gwen Maudet ELTQ/EESSBgERDg
october 2025

Example

maximize z = 2x, + X,
subject to 6x, + 5x, < 23
8X4 + 3%, < 19
X4, X, 2 0
X4, Xo € N

Y

O Set of integer solutions

Divide step 1

* The best solution of Py is X1=1.182 , X2=3.182.

* Divide P, according to variable x;. Solve graphically the subproblems
Pyo and Py;.

Constraint 3 Xz Constraint 3

A= (2

1
X \43 (19,
0 05 1 15

Non integer solution

Py, f(xg9) = 5.4

Integer solution

Poo, f (x00) = 5.4

Po1,f(x01) =5

Divide step 2

* The best solution of Py, is x1=1, x2=3.4

* Divide Pyq according to variable x,. Solve graphically the subproblems
Pyoo and Pyp1.

2 2
7 7
\\0 straint 2 & straint 2

N
%:2)(&1 \=5 ;’Ms)
int 1 3Nt 1 —p]
0 1
A — 4 \
4 0 int 4 “ /
Constraint 0,3 A \

Non integer solution

Integer solution

Poo, f (x00) = 5.4

Optimal solution graphically

O Set of integer solutions

© One optimal solution

Going Deeper in Branch and
Bound

Different branching, searching strategies

From Constraint Integer Programming, Achterberg, PhD thesis, 2007[1]

[1]: Achterberg, Constraint Integer Programming, 2007, PhD thesis

Recap about the B&B tree

PO
LB=10
z=(54, 6.2, 1.6)

branch on x¢

P1 [B
LB=11.5 LB=11
z = (4.8, 6.3, 4.6) z = (6.4, 5.5, 4.7)
branch on zg branch on =g
inherits from PO inherits from PO
P4 Ph P6
LB=13.5 LB=15 LB=16.5
z = (4.1, 6.4, 5.3) z=(6.4,52,3.7) z= (7.1, 5.8, 5.6)

branch on x2 branch on xq branch on x9
inherits from P1 inherits from P2 inherits from P2

P12 P14 P15
LB=15.5 LB=17 LB=18
z= (4.1, 7.3, 5.9) z= (72,53, 3.9 r=(6.8,4.7, 5.7)
branch on xa branch on xa branch on x1q
inherits from P4 inherits from P5 inherits from P&

Recap about the B&B tree

P
kD
x = (54,6:2/46)

branch on x¢

P P,
LB:G'F) LB@
z = (4.8, 63, 4.6) z= (64,55, 4.7)

branch on zg branch on =g
inherits from PO inherits from PO
P E, P6
LB:@ LB@ LB=16.5
z = (4.1, 6~475.3) z = (6.4, 52, 3.7) z= (7.1, 5.8, 5.6)
branch on x2 branch on xq branch on x9
inherits from P1 inherits from P2 inherits from P2

P1 P1 P15
LB:@ LB@ LB=18
z= (4.1, 75.9) z= (7.2, 73.9) r=(6.8,4.7, 5.7)
branch on xa branch on xa branch on x1q
inherits from P4 inherits from P5 inherits from P&

= (4.8, 6.3, 4.6

branch on zg

1T T e g rsgmadl

T=(54,62 46
branch on x¢

P12
LB=15.5
z=(4.1,7.3, 5.9)
branch on xa
inherits from P4

Recap about the B&B tree

z = (6.4, 5.2, 3.7
branch on x1

T = (64, 5.5, 4.
branch on =g
: =i

1n T =Tl

Recap about the B&B tree

* Relaxed solutions (LB, UB) always get bigger from a parent to a child
in minimization problem : = less solutions so poorer solutions

* When you branch on a variable, the children will respect for sure
x; < [xﬂ and [xﬂ < xf
* |f solution is integer, then the subproblem is solved

Branching

Branching Strategies

Answer the question: which variable to select to split one problem into
2 subproblems?

* The objective is to have the highest lower bound on both side of a
child= the best approximation of optimal solution of the subproblem

—>good approximation = good pruning possibilities.

In [1], show that a random branching can lead to ~+200% of solving
time compared to a tuned one.

[1]: Achterberg, Constraint Integer Programming, 2007, PhD thesis

Branching Strategies: most infeasible

Consider a subproblem P¥, non integer solution x%, IK = {i €
[1,n] | x¥ ¢ N}

For one solution candidate x, it fractional parts are f;* = x* — [xﬂ
S k
and £ = x| —x;

* Known one: variable the closest to 0.5: mag(min(ﬁ’ﬁ,ﬁ-’i))
i€l

—> in practice not used because not significantly better than random.

Branching Strategies: strong branching

(Iilcinader a subproblem P¥, non integer solution x*, IX = {i € [1,n] | xllc &

The trick: doing the branching for each variable, and compare the increasing
in the Tower bound =2 tighter lower bound for a same optimal solution
- better chance of pruning

For i € %, Pk leads to P and P/, with improvement of the LB being A

for Pff and A%, for P We want the variable that maximizes the increase of
lower bound

One way is:

maX(Ak X A¥,

ierk
Drawback: doing the branching for each candidate then computing the LB is
really expensive

Branching Strategies: Pseudo Cost
gﬁnmder a subproblem P¥, non integer solution x*, IX = {i € [1,n] | x* ¢

The trick: instead of computing the improvement of the lower bound for
each case, just use experience and approximate it!

Consider for one variable x;, and p; being the number of time it has been
used for branching already in other parts of the tree, each time P! to P

A;
being Al_ and A%, for P/, ; from this experience, =& the LBlgam per fractional

fi A A
fl fl

part. The mean increasing of LB per fractional is ¢;_ = m and @;, = H—”
l l

* Then the pseudo cost for one variable candidate x; is

Qi— X fX X @i X fX
We then choose the variable that maximizes the pseudo cost.
-2 no need for extra computations: more lightweight

Branching Strategies: hybrid

* Pseudo cost is a good approximation, but can’t be used at the beginning

e Strong branching is expensive but the the best choices to make + choices at
the beginning of the solving are the mot important

* 2 In modern solvers (like SCIP open source solver), hybrid approach:
e Use strong branching when the dept is lower than 10
* Else, use pseudo-cost

It exist many other fin tuning for quantifying the quality of a variable for
branching....

Searching

Search strategy

Answer the question: according to a set of unsolved subproblems,
which one to solve the first?

The objective is to explore the node (or subproblem) that leads to the
best solution.

2 components:
* Node comparing method: how to quantify the quality of a node
* Node selection method: which node will be explored in the end

Search Strategy: LB node comparing

* The objective is to rank open subproblems of the tree search. Usually,
a score is given to all node, to then define the ranking.

* Lower Bound(LB): the lower bound on the node can be an estimation
of how will be the integer solution of the subproblem: e; g (P*) =

f(x")

Search Strategy: BP node comparing

* The objective is to rank open subproblems of the tree search. Usually,
a score is given to all node, to then define the ranking.

* Best projection (BP): consider ¢p(x*) = Y™ . min(f*, f) the
distance to the closest integer solution.

egp = f(x") +

(f(x") —f&)

¢ (x°)

b (x")

increase of the score per
fractional unit

Search Strategy: BE node comparing

* The objective is to rank open subproblems of the tree search. Usually,
a score is given to all node, to then define the ranking.

* Best Estimate (BE): use the estimator of increasing of the LB according
to the experience @;_ ;..

epp = FX) +) min(p,_f, 0 fl)

Search Strategy: node selection

There is a total ranking of all the open nodes. Which one to select the
first:

* Best First Search (BFS): select the best one
—advantage: if the ranking is accurate, the best choice is the best node

* Dept First Search (DFS): according to the node explored, select the
best child; if children are completed, get the closest ancestor.

—>advantage: DFS is the fastest way to have one feasible solution

+in practice, the search tree can be big (exponential), and DFS allow to
minimize the number of open nodes

Search Strategy: node selection

* Hybrid version

* As long as the children are unprocessed, do DFS. When you reach integer
solutions, you select the next node by BFS, and then from that node on, you
do again DFS.

* 2 plunging to integer solution but do not get stuck in part of the tree

e Condition can be given to stop the DFS even before finding a good solution: if
the score is too far from the best score, then switch again to BFS.

Exercices

El

A
-
1
1
&
1
1

UNIVERSITE DU
LUXEMBOURG

	Slide 1
	Slide 2: Example
	Slide 3: Divide step 1
	Slide 4
	Slide 5: Divide step 2
	Slide 6
	Slide 7: Optimal solution graphically
	Slide 8: Going Deeper in Branch and Bound
	Slide 9: Recap about the B&B tree
	Slide 10: Recap about the B&B tree
	Slide 11: Recap about the B&B tree
	Slide 12: Recap about the B&B tree
	Slide 13: Branching
	Slide 14: Branching Strategies
	Slide 15: Branching Strategies: most infeasible
	Slide 16: Branching Strategies: strong branching
	Slide 17: Branching Strategies: Pseudo Cost
	Slide 18: Branching Strategies: hybrid
	Slide 19: Searching
	Slide 20: Search strategy
	Slide 21: Search Strategy: LB node comparing
	Slide 22: Search Strategy: BP node comparing
	Slide 23: Search Strategy: BE node comparing
	Slide 24: Search Strategy: node selection
	Slide 25: Search Strategy: node selection
	Slide 26: Exercices
	Slide 27

