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Population based algorithms

Iteration t+1




Main framework of population based algo

Algorithm 3.1 High-level template of P-metaheuristics.

P = Py; /* Generation of the initial population */

t=0;

Repeat
Generate( P;); /* Generation a new population */
P;;; = Select-Population(P; U P)); /* Select new population */
=1+ 1;

Until Stopping criteria satisfied

Output: Best solution(s) found.




Outline

* Common concepts on Population based metaheuristics
* Evolutionary algorithms

* Swarm intelligence



Nature—inspired algorithms

* Simulated annealing

* Tabu search

* Quantum computing

* Neural networks

* Evolutionary Algorithms
* Swarm intelligence



Outline

* Common concept on Population based metaheuristics



Overview of existing initialization methods

Strategy Diversity  Computational Cost  Quality of Initial Solutions
Pseudo-random ++ +++ +
Quasi-random +++ ot +
Sequential diversification ++++ ++ +
Parallel diversification ++++ +++ +

Heuristic + + +4++




Pseudo-random VS Parallel diversification
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FIGURE 3.4 In the pseudo-random generation, 25 solutions are generated independently in FIGURE 3.3 Inthe Latin hypercube strategy, the search space is decomposed into 25 blocks

the search space. and a solution is generated pseudo-randomly in each block.



Stopping criteria

e Static procedure
* Number of iteration
* Computation time

* Adaptive procedure
 Number of iterations without improvements
 Diversity of the population
* Optimal or satisfactory solution is reached



Outline

* Evolutionary algorithms



Principle of evolution
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e Evolution through mutations,
crossovers for each generations
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M - Best offsprings are kept for next
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TABLE 3.3 Evolution Process Versus Solving
an Optimization Problem

Metaphor Optimization
Evolution Problem solving
Individual Solution

Fitness Objective function

Environment Optimization problem




A bit of history

* Genetic Algorithms: J. Holland (1962)

* Genetic Programming: J. Koza (1989)



Evolutionary algorithms
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Domains of application

* Numerical, Combinatorial Optimisation
e System Modeling

* Planning and Control

* Data Mining

* Machine Learning



Performance

* Acceptable performance at acceptable costs on a wide range of
problems

* Intrinsic parallelism (robustness, fault tolerance)

* Superior to other techniques on complex problems with

 Lots of data, many free parameters

« Complex relationships between parameters
« Many (local) optima

« Adaptive, dynamic problems



Advantages

* No presumptions w.r.t. problem space

* Widely applicable

* Low development & application costs

 Easy to incorporate other methods (hybridization)

 Solutions are interpretable (unlike NN)

* Provide many alternative solutions

* Robust regards any change of the environment (data, objectives, etc)



disadvantages

* No guarantee for optimal solution within finite time (in general)

* May need parameter tuning

* Often computationally expensive, i.e. slow (when fitness evaluation is
expensive)



Components of an EA

* Representation of an individual

Algorithm 3.2 Template of an evolutionary algorithm.

. . . Generate(P(0)) ; /* Initial population */
* Objective function =0

While not Termination_Criterion( P(z)) Do

* Selection strategy O ction(P ()
. P'(1) = Reproduction(P’(t)); Evaluate( P'(¢)) ;
* Reproduction strategy P(t+1) = Replace(P(1), P'(1):
t=t+1;
* Replacement strategy End While

Output Best individual or best population found.




Components of an EA

* Representation of an individual

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;

While not Termination_Criterion( P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection( P(1)) ;
P'(1) = Reproduction(P’(t)); Evaluate( P'(¢)) ;
P(t+ 1) = Replace(P(1), P'(1)):
t=t+1;

End While

Output Best individual or best population found.




Types of EA representations

* Genetic Algorithm: one
individual is a list

Used in discrete optimisation
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* Genetic Programming: one
individual is a program

(xx=3)+1-y)

Operators

Terminals

Evolution strategies, Evolutionary programming, Differential evolution..



Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

* Objective function t=0;

While not Termination_Criterion( P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection( P(1)) ;
P'(1) = Reproduction(P’(t)); Evaluate( P'(¢)) ;
P(t+ 1) =Replace(P(1), P'(1));
t=t+1;

End While

Output Best individual or best population found.




Objective function

* Quantify the quality of an individual

SUPER IMPORTANT: represent the desired traits of an individual;
discriminating factor during selection.



Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;
While not Termination_Criterion( P(z)) Do
° : Evaluate(P(1)) ;
Selection strategy L Selection(P(®) :

P'(1) = Reproduction(P’(t)); Evaluate( P'(¢)) ;
P(t+ 1) =Replace(P(1), P'(1));
t=t+1;

End While

Output Best individual or best population found.




Selection strategy

Individuals: 1 2 3 4 5 6 7
Fitness: 1 1 1 15 15 3 3

* roulette * Tournament

Outer Size, e.g. k=3:
76/ i VS ] VS k = best fitness(i, j, k)

e Stochastic universal sampling, Rank based selection



Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;

While not Termination_Criterion( P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection( P(1)) ;

. P'(1) = Reproduction(P’(t)); Evaluate( P'(¢)) ;
* Reproduction strategy P(t+1) = Replace(P(1), P'1))-

t=t+1;

End While

Output Best individual or best population found.




Reproduction strategy

Depend highly on the representation of an individual

e Mutation: which modifies an * Crossover: which combines two or
individual. more individuals to generate new

Ergodicity: every solution in the ones

search space should be reached Heritability: should inherit
characteristics from both parents

Locality: minimal change (related to . _ _ .
neighborhood) Valid: provide valid solution

Valid: provides valid solution
High probability 0.45 < p < 0.95

Low probability 0.001 <p <0.01



Usual mutations of GA

* Binary representation: flip operator.

1111111111#1101111111

* Discrete representation: changing the value associated with an
element by another value: x; = x; + N(0, o) for instance
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* tree representation: growing, shrink the tree
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Crossovers in binary representation
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Arithmetic crossover for real number

Parents
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Crossover In tree representation
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Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;

While not Termination_Criterion( P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection( P(1)) ;
P'(1) = Reproduction(P’(t)); Evaluate( P'(¢)) ;
P(t+ 1) =Replace(P(1), P'(1));
t=t+1;

* Replacement strategy End While

Output Best individual or best population found.




Replacement strategy

Represents the survivor selection of both the parent and the offspring
populations.

* Generational replacement: The replacement will concern the whole
population. The offspring population will replace systematically the parent

population.

* Steady-state replacement: At each generation of an EA, only one offspring
is generated. For instance, it replaces the worst individual of the parent

population.

Can include elitism: reintroducing the best solution found so far.
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Also... things to keep in mind

e EAs are stochastics: don’t draw any conclusions from a single run

e EA’s core evolutionary component is about comparison : do fair
competitions.
* The objective function should be in intelligently chosen
» Offsprings should have a chance to be better than the parents



Some exercices



Small exercise 1

e Suppose a genetic algorithm uses chromosomes of the form x =
abcdef gh: a fixed length of eight genes with each gene being any digit
between 0 and 9. Let the fitness of individual x be calculated as:

fX)=@+b)-(c+d)+(e+f)-(g+h)
* |nitial population is
x1 = 65413281
X, = 12342901

1. Evaluate the fitness of x, x5.

2. Evaluate the two offspring, considering crossover:
1. using the one-point crossover at the middle point;
2. using the two-point crossover at b-cand e-f points.



Small exercise 2

* The knapsack problem is defined by:

The knapsack problem is the following problem in combinatorial optimization: "2k o
Given a set of items, each with a weight and a value, determine which items to include in g l15 kgl
the collection so that the total weight is less than or equal to a given limit and the total y %?
value is as large as possible. l I

* Model the problem and define a solution of the problem:

* How is defined a gene and an individual
* How is defined the fitness



Small exercise 2 SOLUTION

* Set of items (x;)1<;<,; €ach item x; has a weight w; with a value v;.
* Select S c [1,n] the set (x;);es :

* Maximize }};cq V;

* such that }};ccw; < W the maximum weight



Small exercise 2 SOLUTION

* The representation of a solution is a binary list, where 1 means that it is
included in the bag, 0 otherwise

AL JOJ OO JOJOJO0OOJO0OFO0OY]JO

A2 1 1111111 111 lIl 1

A3 1 oJoj173a0 111 OID 0

Ad |1 oOg1j0¢Q3@0 110 1110

* Fitness is defined by the value of the selected items if it respects the
weights, 0 otherwise



Small exercise 2

* How to define
* 3 mutation
® a crossover



Small exercise 2 SOLUTION

* Mutation is bit flipping

* Crossover, classical crossovers on binary lists works

Parents Offsprings
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Small exercise 3

* How look like an EA if an individual represents a permutation of the n
first alphabetical letters (for Travelling Salesman Problem for instance)

* Representation of an individual
* Proposition of a crossover, mutation operator

A permutation can be defined as a bijection (an invertible mapping, a one-to-one and onto function) from a set S to itself:

g: 58— 8.



Small exercise 3 SOLUTION

* One solution can be defined by an ordering of the alphabetical list:
abcdef ghij

* Mutation can be defined by
* aswap
* removing an element and place it elsewhere



Small exercise 3 SOLUTION: crossover for
permutation l
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Properties:

From parent 1, the relative order, the adjacency, and the absolute positions are preserved.
From parent 2, only the relative order is preserved.




Outline

* Swarm intelligence
* Ant colonies
* Particle swarm optimization



What is swarm intelligence

Collective system capable of accomplishing difficult tasks in dynamic
and varied environments without any external guidance or control and
with no central coordination

e Simple elements that move in the decision space
* Indirect communicate with each other at each generation



Inherent features

* Inherent parallelism

* Stochastic nature

* Adaptivity

» Use of positive feedback (reinforcement learning)



Outline

 Ant colonies



Ant-colonies

Proposed by Dorigo (1992)

* Imitate the cooperative behavior
of ant colonies to solve
optimization problems

* Use very simple communication
mechanism: pheromone




Ant colonies framework

Algorithm 3.12 Template of the ACO.

Initialize the pheromone trails ;
Repeat
For each ant Do
Solution construction using the pheromone trail ;
Update the pheromone trails:
Evaporation ;
Reinforcement ;
Until Stopping criteria
Output: Best solution found or a set of solutions.




Definition of ant behavior

A ant travel into a graph, with pheromones being Titj foran edge i, at
time t

* At time t, the ant k is at position i have possible next directions Nl-k.
The probability to go to a node j is:

L.
plkj = = Y ~if j € NF, else, 0

’l'.
leN’éc il

The next move is made randomly according to these probabilities.



Updates of pheromones

* Initially, a constant amount of pheromone is assigned to all arcs.
* Then:

* update of the pheromones according to ant behaviors
* evaporation of the pheromones: 7;; = 7;;(1 — p)



Updates of the pheromones

Multiple strategies, according to the defined problem:

* Online step-by-step: The pheromone trail is updated by an ant at each
step of the solution construction

e Off-line: The pheromone train update is applied once all ants
generate a complete solution. This is the most popular approach
where different strategies can be used

* e.g, quality based: the (k) best candidates add A to all edges traversed 7;; =
Tij + A.




Simple Ant-colony construction

* A graph
* A mission to accomplish (e.g., going to one/multiple points)
* A reward according to the path made (duration of the travel)

Initially, a constant amount of pheromone is assigned to all arcs



Main issues in the design

* Pheromone information: should reflect the relevant information in
the construction of the solution for a given problem.

 Pheromone update: the reinforcement learning strategy for the
pheromone information has to be defined to guide without leading to
premature convergence.

* Solution construction: after the run of the algorithm, how to build the
solution output. Can be done using a greedy method: the ant that
follow each time the path that has the most pheromones.




Outline

* Particle swarm optimization



Particle Swarm

* Proposed by Dr. Eberhart and Dr.
Kennedy (1995)

* Inspired by social behavior of
bird flocking or fish schooling

* Represent an element by its
position and veolicity



Particle swarm

Velocity of the

/O P —>»  particle

Decision space




Representation of a particle

This problem solve problem that can be represented by a vector of k
dimension: analogous to genetic algorithm solution.

A particle is composed of
* The x-vector: current position of the particle x;(t — 1)
* The p-vector: best solution found so far by the particle p;

* The v-vector: a gradient for which particle will travel in if undisturbed
V; (t — 1)

g-vector represent the position of the best candidate (locally, or globally) Pg




Template of the PSO algorithm

*v;(t) = vt — 1) + ps(pi —x:(t — 1)) + po(py — x:(t — 1))

Algorithm 3.14 Template of the particle swarm optimization algorithm.

Random initialization of the whole swarm ;
Repeat
Evaluate f(x;) ;
For all particles i
Update velocities:
vi) = vt — D+ p1 x (pi —x:(t — 1))+ p2 X (py —x:(t — 1)) 3
Move to the new position: x;(t) = x;(t — 1) + v;(1) ;
If f(x;) < f(pbest;) Then pbest; = x; ;
If f(x;) <= f(gbest) Then ghest — x; ;
Update(x;, v;) ;
EndFor
Until Stopping criteria




Update of a particle

*v;(t) = vt — D) + ps(pi —x:(t — 1)) + pa(pg — x:(t — 1))

p;: My bBest performance

x(t): G\ kel p,: Best performance
N X g
Current position Pgx(1) ).O of my neighbors

x(f+1): New position



Particle swarms: keep in mind

* These methods are more constrained to the structure of the solution
in its vanilla phase

-2 Can inspired for more advanced methods defined for specific
problems



How to build a meta-heuristic: takeaways

* Lots of methods exists, but each depends on:
e The structure of the solution (binary, list, tree, other?)
* How to evaluate a solution (costly, explicit..)
* The link between components of a solution
* The influence of one good solution to others

* One strategy won’t win in all case
* Not all methods are fitted to a problem (hard to define crossover for instance)
* Try multiple approaches
* For one approach, try multiple settings

* These methods are vanilla methods: should work in most cases
* Adapting the method to a precise problem can improve performance



For the 2 following weeks

* Please bring your computer, as we are going to work on Python
notebook:
e Usable through google collab
* Usable through jupyter (included in the Anaconda package)
* Included in most python IDEs
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