Inspired from

Metaheuristics: From Design to Implementation, Chapter 3, Talbi, EI-Ghazali

Dr. Gwen Maudet UNIVERSITE DU
LUXEMBOURG
december 2025

Where are we

 19/09:
* 23/09:
* 30/09:
« 07/10:
» 14/10:
» 21/10:

« 28/10

Introduction (Greg)
Problem modelling (Greg)
Graphic solving (Greg)
Branch & Bound (Gwen)
Branch & Bound 2 (Gwen)

Consistency and All Different Global Constraint (Pierre)

: Scheduling Problem and Cumulative Global Constraint (Pierre)
* 04/11:
e 11/11:
* 18/11:
e 25/11:
* 02/12:
* 09/12:
« 16/12:

Implementation of Propagate-and-Search in Python (Pierre)
Multiobjective Optimization (Greg)

Heuristic algorithms : local search (Greg)

approximation algorithms: population based (Gwen)

Put all this in practice in a jupiter notebook (Gwen)

Put all this in practice in a jupiter notebook Il (Gwen)

Ongoing Research in Optimisation (Gwen + Greg)

Where are we

Optimization methods

4/\»

Exact methods Approximate methods

SN

Branch and Constraint Dynamic ~ A*, IDA* Heuristic algorithms ~ APProximation
_ programming,Programming algorithms

Branch and B
bound

Metaheuristics Problem-specific

ranch and Branch and heuristics

cut price

Single-solution based
metaheuristics

Population-based
metaheuristics

Population based algorithms

Iteration t+1

Main framework of population based algo

Algorithm 3.1 High-level template of P-metaheuristics.

P = Py; /* Generation of the initial population */

t=0;

Repeat
Generate(P;); /* Generation a new population */
P;;; = Select-Population(P; U P)); /* Select new population */
=1+ 1;

Until Stopping criteria satisfied

Output: Best solution(s) found.

Outline

* Common concepts on Population based metaheuristics
* Evolutionary algorithms

* Swarm intelligence

Nature—inspired algorithms

* Simulated annealing

* Tabu search

* Quantum computing

* Neural networks

* Evolutionary Algorithms
* Swarm intelligence

Outline

* Common concept on Population based metaheuristics

Overview of existing initialization methods

Strategy Diversity Computational Cost Quality of Initial Solutions
Pseudo-random ++ +++ +
Quasi-random +++ ot +
Sequential diversification ++++ ++ +
Parallel diversification ++++ +++ +

Heuristic + + +4++

Pseudo-random VS Parallel diversification

Q s e e e e ana e e e e aaaa X o
o —] . A +
+ + +
+
@Q | * * «© +
o o + : : . +
+
L o + L © i *
g (@] + g o + + N ¥
S + * 5
S <)
8 < AP + 3 R :
> o N > O + + + +
o + + * ol i +
o | . S + N +
+
=2 I o A = S
e T T T T T T e T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x-coordinate x-coordinate
FIGURE 3.4 In the pseudo-random generation, 25 solutions are generated independently in FIGURE 3.3 Inthe Latin hypercube strategy, the search space is decomposed into 25 blocks

the search space. and a solution is generated pseudo-randomly in each block.

Stopping criteria

e Static procedure
* Number of iteration
* Computation time

* Adaptive procedure
 Number of iterations without improvements
 Diversity of the population
* Optimal or satisfactory solution is reached

Outline

* Evolutionary algorithms

Principle of evolution

*®

\ =]

e Evolution through mutations,
crossovers for each generations

o
M - Best offsprings are kept for next
: generations

<&

——

v

—

TABLE 3.3 Evolution Process Versus Solving
an Optimization Problem

Metaphor Optimization
Evolution Problem solving
Individual Solution

Fitness Objective function

Environment Optimization problem

A bit of history

* Genetic Algorithms: J. Holland (1962)

* Genetic Programming: J. Koza (1989)

Evolutionary algorithms

Initialization of the
_ population J

Population evaluation

O=7

Termination
condition

_ Replacement)
NO l / '

4 B a crossover) B
©00© v0 530
mutation
00 000/ gt

; _ Population evaluation

_ Selection Yy, _ Reproduction Y, Y Q-7)

Domains of application

* Numerical, Combinatorial Optimisation
e System Modeling

* Planning and Control

* Data Mining

* Machine Learning

Performance

* Acceptable performance at acceptable costs on a wide range of
problems

* Intrinsic parallelism (robustness, fault tolerance)

* Superior to other techniques on complex problems with

 Lots of data, many free parameters

« Complex relationships between parameters
« Many (local) optima

« Adaptive, dynamic problems

Advantages

* No presumptions w.r.t. problem space

* Widely applicable

* Low development & application costs

 Easy to incorporate other methods (hybridization)

 Solutions are interpretable (unlike NN)

* Provide many alternative solutions

* Robust regards any change of the environment (data, objectives, etc)

disadvantages

* No guarantee for optimal solution within finite time (in general)

* May need parameter tuning

* Often computationally expensive, i.e. slow (when fitness evaluation is
expensive)

Components of an EA

* Representation of an individual

Algorithm 3.2 Template of an evolutionary algorithm.

. . . Generate(P(0)) ; /* Initial population */
* Objective function =0

While not Termination_Criterion(P(z)) Do

* Selection strategy O ction(P ()
. P'(1) = Reproduction(P’(t)); Evaluate(P'(¢)) ;
* Reproduction strategy P(t+1) = Replace(P(1), P'(1):
t=t+1;
* Replacement strategy End While

Output Best individual or best population found.

Components of an EA

* Representation of an individual

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;

While not Termination_Criterion(P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection(P(1)) ;
P'(1) = Reproduction(P’(t)); Evaluate(P'(¢)) ;
P(t+ 1) = Replace(P(1), P'(1)):
t=t+1;

End While

Output Best individual or best population found.

Types of EA representations

* Genetic Algorithm: one
individual is a list

Used in discrete optimisation

mBTele oo [elo e s[5

A2 1|11 1|1|1|1

T

a3 |1

ofo]r]e

1|1

Population

Individual

]D Gene
A4 1|0|1| |0|1|0| E:l

Individual

* Genetic Programming: one
individual is a program

(xx=3)+1-y)

Operators

Terminals

Evolution strategies, Evolutionary programming, Differential evolution..

Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

* Objective function t=0;

While not Termination_Criterion(P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection(P(1)) ;
P'(1) = Reproduction(P’(t)); Evaluate(P'(¢)) ;
P(t+ 1) =Replace(P(1), P'(1));
t=t+1;

End While

Output Best individual or best population found.

Objective function

* Quantify the quality of an individual

SUPER IMPORTANT: represent the desired traits of an individual;
discriminating factor during selection.

Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;
While not Termination_Criterion(P(z)) Do
° : Evaluate(P(1)) ;
Selection strategy L Selection(P(®) :

P'(1) = Reproduction(P’(t)); Evaluate(P'(¢)) ;
P(t+ 1) =Replace(P(1), P'(1));
t=t+1;

End While

Output Best individual or best population found.

Selection strategy

Individuals: 1 2 3 4 5 6 7
Fitness: 1 1 1 15 15 3 3

* roulette * Tournament

Outer Size, e.g. k=3:
76/ i VS] VS k = best fitness(i, j, k)

e Stochastic universal sampling, Rank based selection

Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;

While not Termination_Criterion(P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection(P(1)) ;

. P'(1) = Reproduction(P’(t)); Evaluate(P'(¢)) ;
* Reproduction strategy P(t+1) = Replace(P(1), P'1))-

t=t+1;

End While

Output Best individual or best population found.

Reproduction strategy

Depend highly on the representation of an individual

e Mutation: which modifies an * Crossover: which combines two or
individual. more individuals to generate new

Ergodicity: every solution in the ones

search space should be reached Heritability: should inherit
characteristics from both parents

Locality: minimal change (related to . _ _ .
neighborhood) Valid: provide valid solution

Valid: provides valid solution
High probability 0.45 < p < 0.95

Low probability 0.001 <p <0.01

Usual mutations of GA

* Binary representation: flip operator.

1111111111#1101111111

* Discrete representation: changing the value associated with an
element by another value: x; = x; + N(0, o) for instance

| 0,2‘ 9.3. ae\ o.?| a.e ﬁ

* tree representation: growing, shrink the tree

grow
a‘{\& —>
\

%4

Crossovers in binary representation

Parents Offsprings
: 1-point crossover '|
0 010 0 0 0 0 010 0 0 0o 0 0 0 0 1 1
I
|) ’ I
1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 00

, . 2-point crossover ! !

. | [
0 OID 0o Ojogogpoqpqo 0 0

—— — .

I
lllllOOIll
|
I

Uniform crossover

0 IIO 0o OjJ1107Q0

0 0OpoJ0jJO0JO0O]O0 OIO 0

Arithmetic crossover for real number

Parents

q (02+0.1) §| (0.4+03) | (0.2+08
2 12 /2

Offspring

Crossover In tree representation
{2} ><
6

(x*-3)+(1-y)

Components of an EA

Algorithm 3.2 Template of an evolutionary algorithm.

Generate(P(0)) ; /* Initial population */

t=0;

While not Termination_Criterion(P(z)) Do
Evaluate(P(1)) ;
P'(t) = Selection(P(1)) ;
P'(1) = Reproduction(P’(t)); Evaluate(P'(¢)) ;
P(t+ 1) =Replace(P(1), P'(1));
t=t+1;

* Replacement strategy End While

Output Best individual or best population found.

Replacement strategy

Represents the survivor selection of both the parent and the offspring
populations.

* Generational replacement: The replacement will concern the whole
population. The offspring population will replace systematically the parent

population.

* Steady-state replacement: At each generation of an EA, only one offspring
is generated. For instance, it replaces the worst individual of the parent

population.

Can include elitism: reintroducing the best solution found so far.

Evolutionary algorithms

Initialization of the
_ population Y,

Population evaluation

O=2

Termination
condition

_ Replacement)
| o

. N : crossover \ A

ﬁ oN 0g 00
O 0o © 0 R

mutation

Population evaluation

_ Selection Y. _ Reproduction - 9 0--)

Also... things to keep in mind

e EAs are stochastics: don’t draw any conclusions from a single run

e EA’s core evolutionary component is about comparison : do fair
competitions.
* The objective function should be in intelligently chosen
» Offsprings should have a chance to be better than the parents

Some exercices

Small exercise 1

e Suppose a genetic algorithm uses chromosomes of the form x =
abcdef gh: a fixed length of eight genes with each gene being any digit
between 0 and 9. Let the fitness of individual x be calculated as:

fX)=@+b)-(c+d)+(e+f)-(g+h)
* |nitial population is
x1 = 65413281
X, = 12342901

1. Evaluate the fitness of x, x5.

2. Evaluate the two offspring, considering crossover:
1. using the one-point crossover at the middle point;
2. using the two-point crossover at b-cand e-f points.

Small exercise 2

* The knapsack problem is defined by:

The knapsack problem is the following problem in combinatorial optimization: "2k o
Given a set of items, each with a weight and a value, determine which items to include in g l15 kgl
the collection so that the total weight is less than or equal to a given limit and the total y %?
value is as large as possible. l I

* Model the problem and define a solution of the problem:

* How is defined a gene and an individual
* How is defined the fitness

Small exercise 2 SOLUTION

* Set of items (x;)1<;<,; €ach item x; has a weight w; with a value v;.
* Select S c [1,n] the set (x;);es :

* Maximize }};cq V;

* such that }};ccw; < W the maximum weight

Small exercise 2 SOLUTION

* The representation of a solution is a binary list, where 1 means that it is
included in the bag, 0 otherwise

AL JOJ OO JOJOJO0OOJO0OFO0OY]JO

A2 1 1111111 111 lIl 1

A3 1 oJoj173a0 111 OID 0

Ad |1 oOg1j0¢Q3@0 110 1110

* Fitness is defined by the value of the selected items if it respects the
weights, 0 otherwise

Small exercise 2

* How to define
* 3 mutation
® a crossover

Small exercise 2 SOLUTION

* Mutation is bit flipping

* Crossover, classical crossovers on binary lists works

Parents Offsprings

. 1
1-point crossover |

1
I
IOIO[OIOIOIO'O DIOIOI |0|0|UIOIOIOIO llllll
| ’ 1
Clefefefelefef fe]: Llefefefe]efefefo]o]
| 1
1 I

2-point crossover

| | | |
| 1 | |
[efofofofofofo]ofo]o] ofofofefo]e]s]ofo]e]
| | é i]
| | |
[T LLEEE CEEEEEEEET
| | ! |
| 1 I I

Uniform crossover

|o|o|o|o—ro]o|olo|o|o| ol tfolofo]oli]o]o]:
Lol fofofofofefofe]:]
noononopoojooononnsnn

Small exercise 3

* How look like an EA if an individual represents a permutation of the n
first alphabetical letters (for Travelling Salesman Problem for instance)

* Representation of an individual
* Proposition of a crossover, mutation operator

A permutation can be defined as a bijection (an invertible mapping, a one-to-one and onto function) from a set S to itself:

g: 58— 8.

Small exercise 3 SOLUTION

* One solution can be defined by an ordering of the alphabetical list:
abcdef ghij

* Mutation can be defined by
* aswap
* removing an element and place it elsewhere

Small exercise 3 SOLUTION: crossover for
permutation l

[
| | | — »
defefelefefofr]i i cfn] felafofe]rfe]e
I | |
| I j

LI [Tel-TToT T 1] 5 cono 1A

o fefe o] elcfn
Properties:

From parent 1, the relative order, the adjacency, and the absolute positions are preserved.
From parent 2, only the relative order is preserved.

Outline

* Swarm intelligence
* Ant colonies
* Particle swarm optimization

What is swarm intelligence

Collective system capable of accomplishing difficult tasks in dynamic
and varied environments without any external guidance or control and
with no central coordination

e Simple elements that move in the decision space
* Indirect communicate with each other at each generation

Inherent features

* Inherent parallelism

* Stochastic nature

* Adaptivity

» Use of positive feedback (reinforcement learning)

Outline

 Ant colonies

Ant-colonies

Proposed by Dorigo (1992)

* Imitate the cooperative behavior
of ant colonies to solve
optimization problems

* Use very simple communication
mechanism: pheromone

Ant colonies framework

Algorithm 3.12 Template of the ACO.

Initialize the pheromone trails ;
Repeat
For each ant Do
Solution construction using the pheromone trail ;
Update the pheromone trails:
Evaporation ;
Reinforcement ;
Until Stopping criteria
Output: Best solution found or a set of solutions.

Definition of ant behavior

A ant travel into a graph, with pheromones being Titj foran edge i, at
time t

* At time t, the ant k is at position i have possible next directions Nl-k.
The probability to go to a node j is:

L.
plkj = = Y ~if j € NF, else, 0

’l'.
leN’éc il

The next move is made randomly according to these probabilities.

Updates of pheromones

* Initially, a constant amount of pheromone is assigned to all arcs.
* Then:

* update of the pheromones according to ant behaviors
* evaporation of the pheromones: 7;; = 7;;(1 — p)

Updates of the pheromones

Multiple strategies, according to the defined problem:

* Online step-by-step: The pheromone trail is updated by an ant at each
step of the solution construction

e Off-line: The pheromone train update is applied once all ants
generate a complete solution. This is the most popular approach
where different strategies can be used

* e.g, quality based: the (k) best candidates add A to all edges traversed 7;; =
Tij + A.

Simple Ant-colony construction

* A graph
* A mission to accomplish (e.g., going to one/multiple points)
* A reward according to the path made (duration of the travel)

Initially, a constant amount of pheromone is assigned to all arcs

Main issues in the design

* Pheromone information: should reflect the relevant information in
the construction of the solution for a given problem.

 Pheromone update: the reinforcement learning strategy for the
pheromone information has to be defined to guide without leading to
premature convergence.

* Solution construction: after the run of the algorithm, how to build the
solution output. Can be done using a greedy method: the ant that
follow each time the path that has the most pheromones.

Outline

* Particle swarm optimization

Particle Swarm

* Proposed by Dr. Eberhart and Dr.
Kennedy (1995)

* Inspired by social behavior of
bird flocking or fish schooling

* Represent an element by its
position and veolicity

Particle swarm

Velocity of the

/O P —>» particle

Decision space

Representation of a particle

This problem solve problem that can be represented by a vector of k
dimension: analogous to genetic algorithm solution.

A particle is composed of
* The x-vector: current position of the particle x;(t — 1)
* The p-vector: best solution found so far by the particle p;

* The v-vector: a gradient for which particle will travel in if undisturbed
V; (t — 1)

g-vector represent the position of the best candidate (locally, or globally) Pg

Template of the PSO algorithm

*v;(t) = vt — 1) + ps(pi —x:(t — 1)) + po(py — x:(t — 1))

Algorithm 3.14 Template of the particle swarm optimization algorithm.

Random initialization of the whole swarm ;
Repeat
Evaluate f(x;) ;
For all particles i
Update velocities:
vi) = vt — D+ p1 x (pi —x:(t — 1))+ p2 X (py —x:(t — 1)) 3
Move to the new position: x;(t) = x;(t — 1) + v;(1) ;
If f(x;) < f(pbest;) Then pbest; = x; ;
If f(x;) <= f(gbest) Then ghest — x; ;
Update(x;, v;) ;
EndFor
Until Stopping criteria

Update of a particle

*v;(t) = vt — D) + ps(pi —x:(t — 1)) + pa(pg — x:(t — 1))

p;: My bBest performance

x(t): G\ kel p,: Best performance
N X g
Current position Pgx(1)).O of my neighbors

x(f+1): New position

Particle swarms: keep in mind

* These methods are more constrained to the structure of the solution
in its vanilla phase

-2 Can inspired for more advanced methods defined for specific
problems

How to build a meta-heuristic: takeaways

* Lots of methods exists, but each depends on:
e The structure of the solution (binary, list, tree, other?)
* How to evaluate a solution (costly, explicit..)
* The link between components of a solution
* The influence of one good solution to others

* One strategy won’t win in all case
* Not all methods are fitted to a problem (hard to define crossover for instance)
* Try multiple approaches
* For one approach, try multiple settings

* These methods are vanilla methods: should work in most cases
* Adapting the method to a precise problem can improve performance

For the 2 following weeks

* Please bring your computer, as we are going to work on Python
notebook:
e Usable through google collab
* Usable through jupyter (included in the Anaconda package)
* Included in most python IDEs

El

A
-
1
1
&
1
1

UNIVERSITE DU
LUXEMBOURG

	Slide 1
	Slide 2: Where are we
	Slide 3: Where are we
	Slide 4: Population based algorithms
	Slide 5: Main framework of population based algo
	Slide 6: Outline
	Slide 7: Nature–inspired algorithms
	Slide 8: Outline
	Slide 9: Overview of existing initialization methods
	Slide 10: Pseudo-random VS Parallel diversification
	Slide 11: Stopping criteria
	Slide 12: Outline
	Slide 13: Principle of evolution
	Slide 14: A bit of history
	Slide 15: Evolutionary algorithms
	Slide 16: Domains of application
	Slide 17: Performance
	Slide 18: Advantages
	Slide 19: disadvantages
	Slide 20: Components of an EA
	Slide 21: Components of an EA
	Slide 22: Types of EA representations
	Slide 23: Components of an EA
	Slide 24: Objective function
	Slide 25: Components of an EA
	Slide 26: Selection strategy
	Slide 27: Components of an EA
	Slide 28: Reproduction strategy
	Slide 29: Usual mutations of GA
	Slide 30: Crossovers in binary representation
	Slide 31: Arithmetic crossover for real number
	Slide 32: Crossover in tree representation
	Slide 33: Components of an EA
	Slide 34: Replacement strategy
	Slide 35: Evolutionary algorithms
	Slide 36: Also… things to keep in mind
	Slide 37: Some exercices
	Slide 38: Small exercise 1
	Slide 39: Small exercise 2
	Slide 40: Small exercise 2 SOLUTION
	Slide 41: Small exercise 2 SOLUTION
	Slide 42: Small exercise 2
	Slide 43: Small exercise 2 SOLUTION
	Slide 44: Small exercise 3
	Slide 45: Small exercise 3 SOLUTION
	Slide 46: Small exercise 3 SOLUTION: crossover for permutation
	Slide 47: Outline
	Slide 48: What is swarm intelligence
	Slide 49: Inherent features
	Slide 50: Outline
	Slide 51: Ant-colonies
	Slide 52: Ant colonies framework
	Slide 53: Definition of ant behavior
	Slide 54: Updates of pheromones
	Slide 55: Updates of the pheromones
	Slide 56: Simple Ant-colony construction
	Slide 57: Main issues in the design
	Slide 58: Outline
	Slide 59: Particle Swarm
	Slide 60: Particle swarm
	Slide 61: Representation of a particle
	Slide 62: Template of the PSO algorithm
	Slide 63: Update of a particle
	Slide 64: Particle swarms: keep in mind
	Slide 65: How to build a meta-heuristic: takeaways
	Slide 66: For the 2 following weeks
	Slide 67

