

Integer Linear Programming: Introduction to Branch & Bound

Dr. Gwen Maudet

october 2025

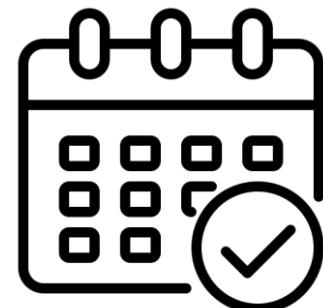
ILP definition

$$\min_{\mathbf{x}} \{ \mathbf{c}^T \mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b} \}, \mathbf{x} \in \mathbb{N}^n, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$$

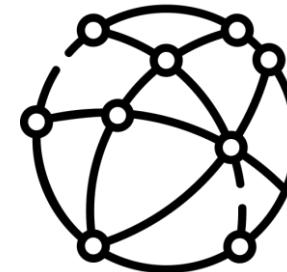
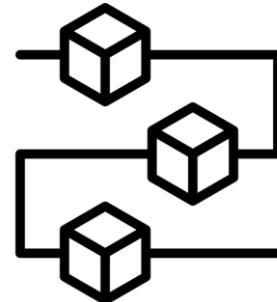
- $\mathbf{x} = (x_i)_{1 \leq i \leq n}$: Set of **integer** variables
- $\mathbf{c}^T \mathbf{x} = \sum_i x_i c_i$: Minimization function
- $\mathbf{A}\mathbf{x} \leq \mathbf{b}$: $1 \leq j \leq m, \sum_i A_{j,i} x_i \leq b_j$: Set of constraints

What are the applications of ILP?

Most of the problems are not LP but ILP problems



- Production planning
- Scheduling
- Networks
- ...



Companies using solvers

Join Industry Leaders Who Rely on Gurobi for Smarter, Faster, Decisions

Existing solvers

Commercial (need to pay ☹)

- FICO Xpress (1986)
- CPLEX (1996)
- Gurobi (2008)

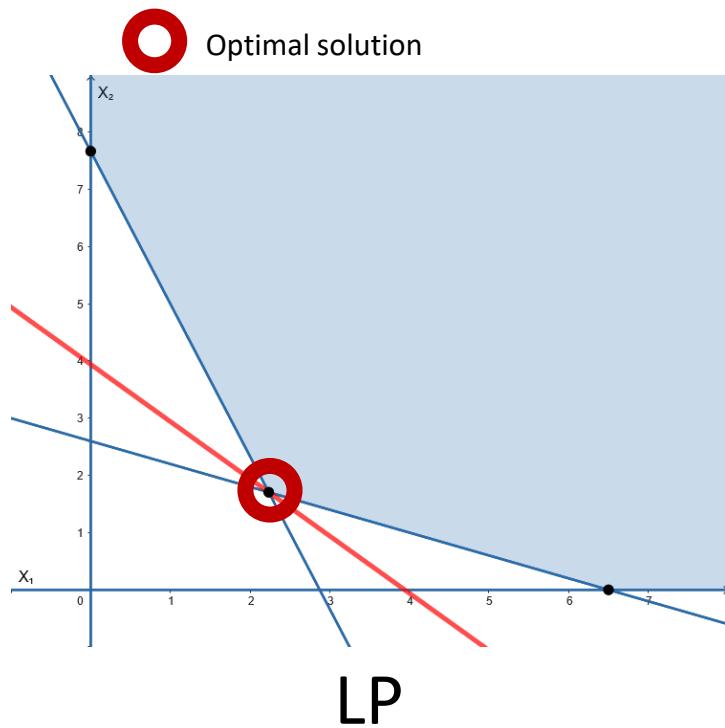
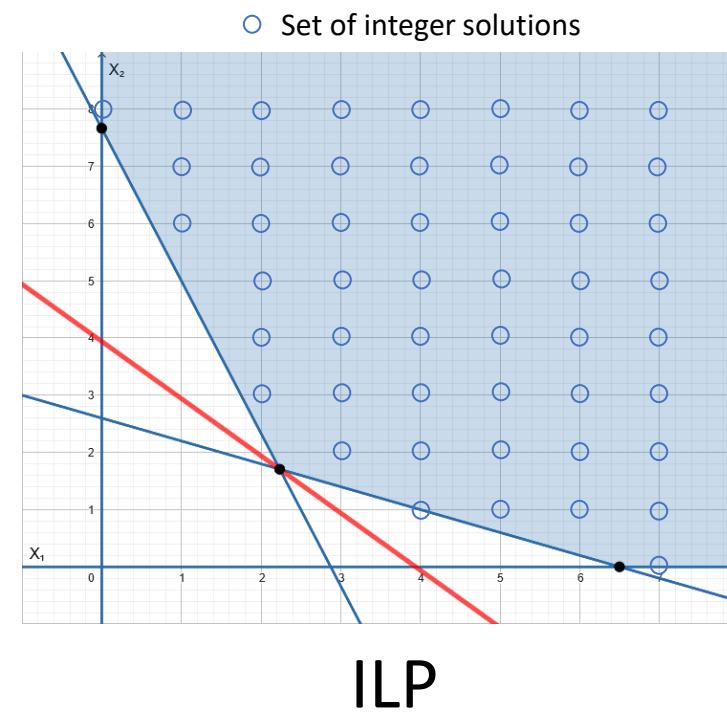
Open source

- SCIP (2002)
- HiGHs (2018)

Most of them are portable on Python

LP and ILP

- Solving LP - simplex algorithm: polynomial complexity
- Solving ILP: NP-complete, exponential according to the dimensions of the problem

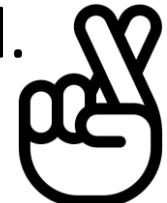


How to solve an ILP?

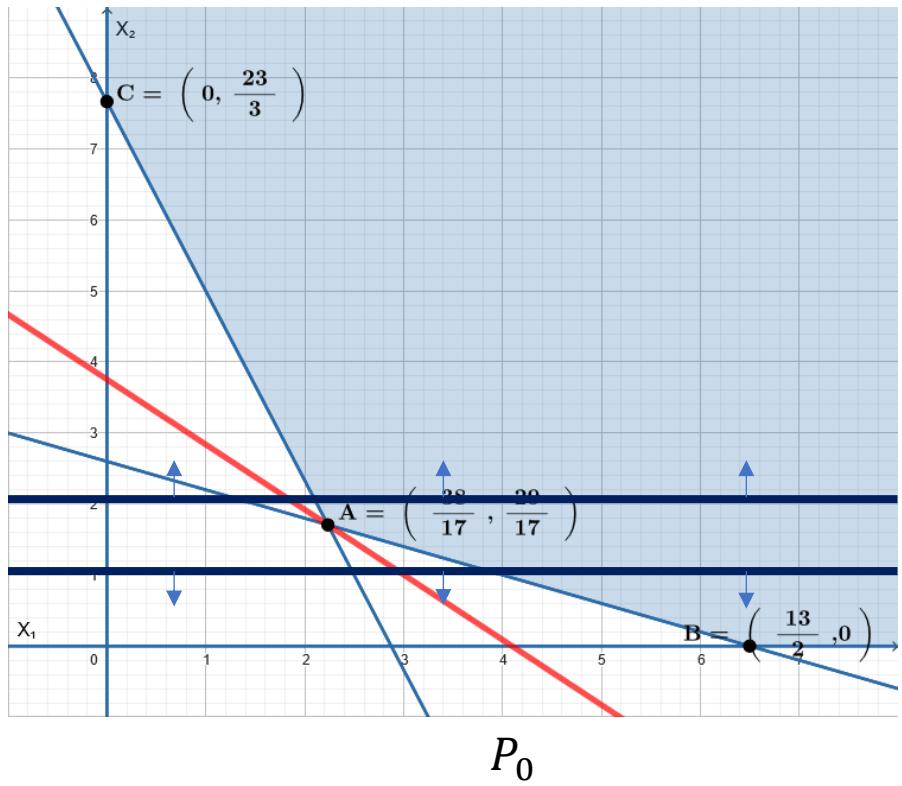
BIG IDEA:

- It exist methods to solve LP problems in polynomial time
- BUT not method to solve an ILP in polynomial time.

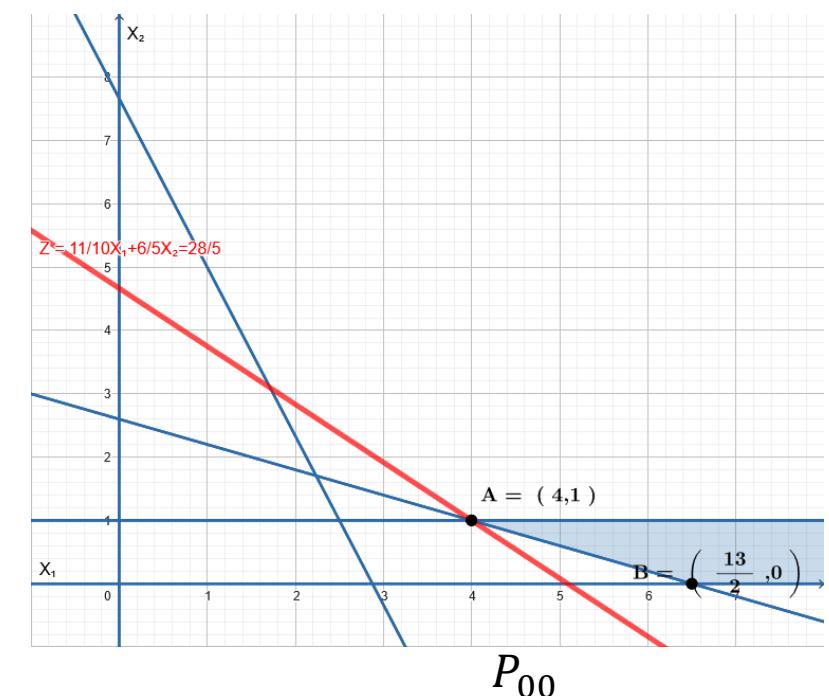
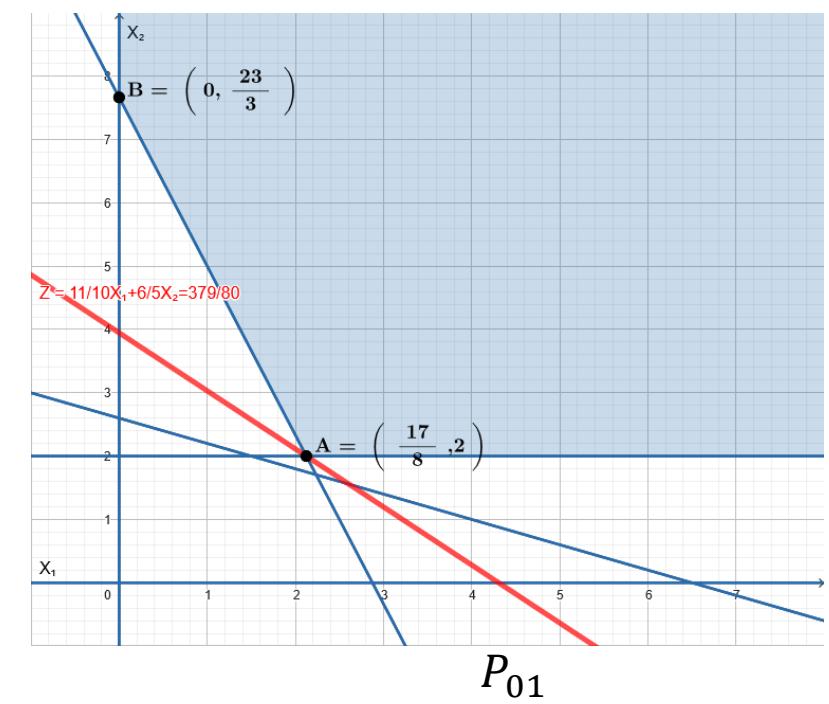
→ We consider the “relaxed version” of the ILP, and solve the LP problem, cross the fingers that the solution gives an integer sol.



- If not, then we divide the problem in subproblems that does not include that value, and cross fingers again, etc..



$$P_0 = P_{00} \cup P_{01}$$



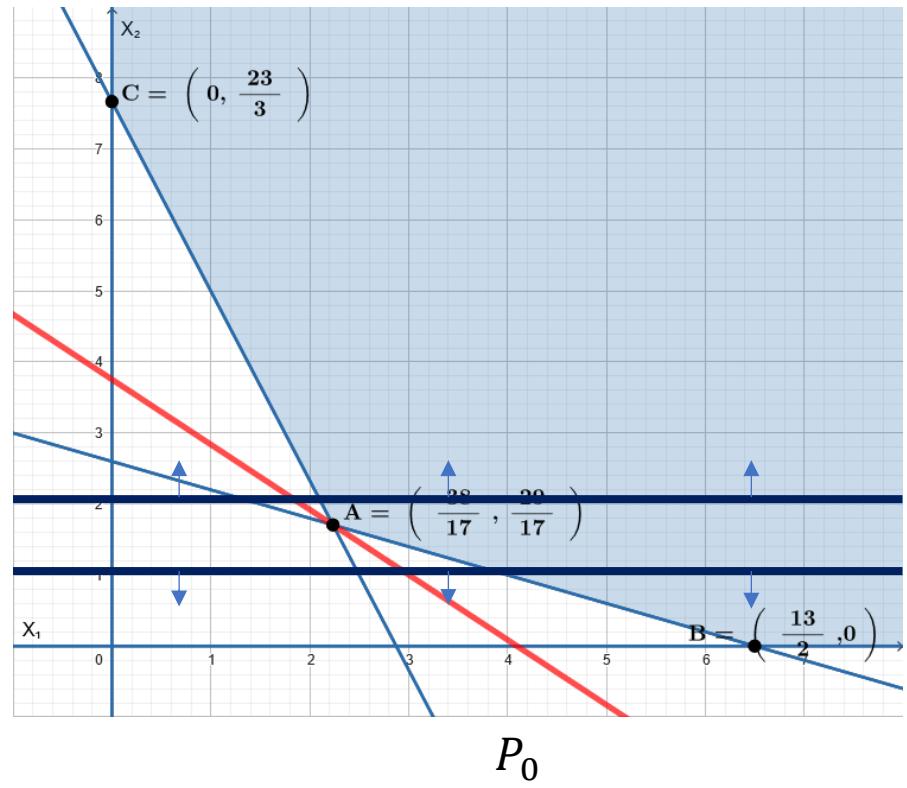
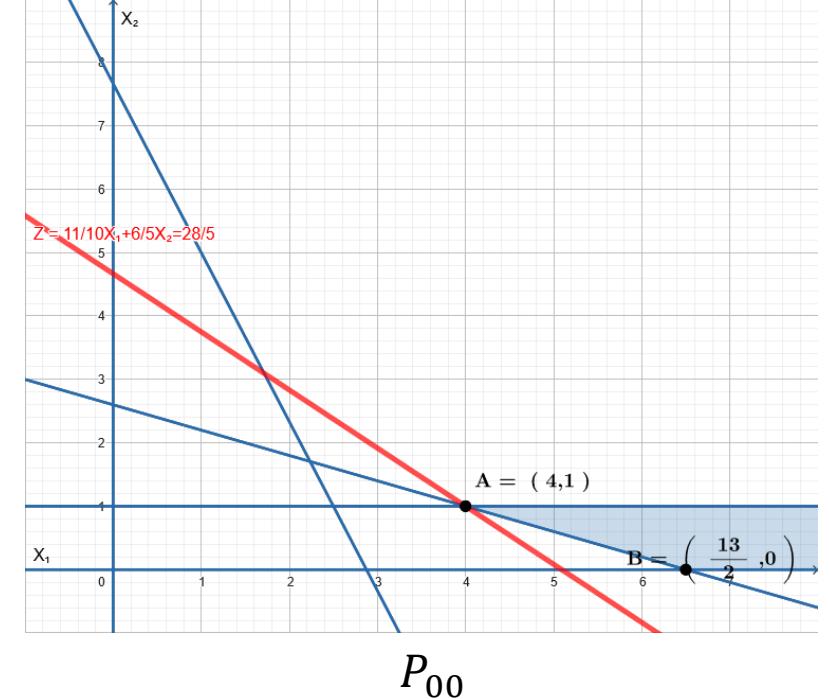
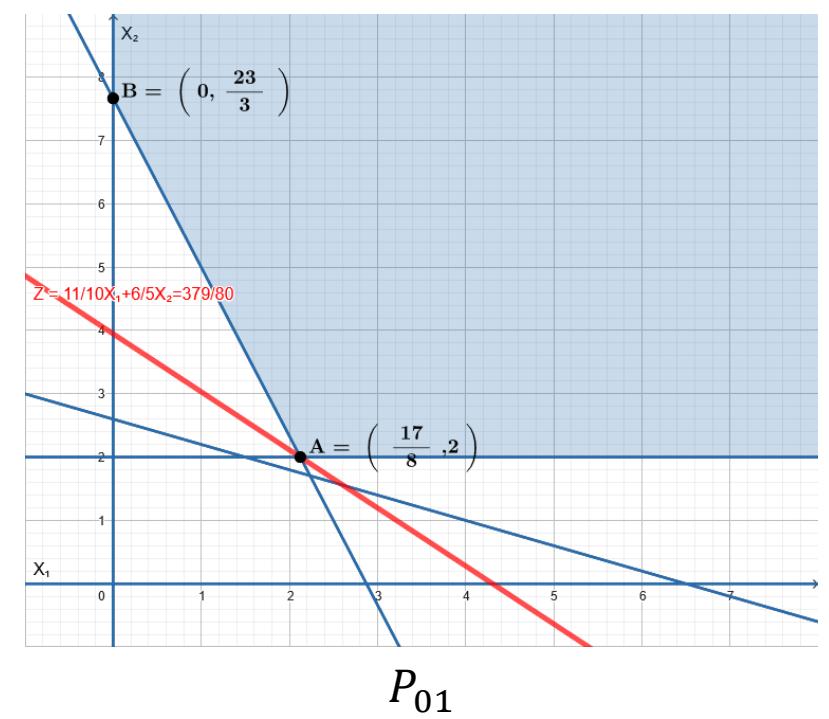
THIS IS THE BRANCH AND BOUND

Branch and Bound: “Divide and conquer”

Consider a problem P^0 with objective of $\min_{x \in K} f(x)$, K^0 representing the constraints on the variables, f the minimization function; we consider an existing solution (the best for now) x^* leading the score $f(x^*)$.

Take one subproblem P^k , solve its relaxed version to have $x^k = (x_i^k)_{i \in [1, n]}$ with score $f(x^k)$.

- if the solution is integer, x^k is the solution of P^k , so it is one solution for P . We update the best solution $f(x^*)$ if the solution is improved $f(x^*) = \min(f(x^k), f(x^*))$.
- Else:
 - Conquer:
 - if $f(x^k) > f(x^*)$, P^k wont lead to a better solution than $f(x^*)$, so we stop the exploration on this problem, and prune.
 - Else, we do divide and split the variable set P^k .
 - Divide: we select one of the variable x^k such that x_i^k is not integer; the variable set K^k is split into $K_{i-}^k = K^k, x_i \leq \lfloor x_i^k \rfloor$ and $K_{i+}^k = K^k, x_i \geq \lceil x_i^k \rceil$ to define the problems P_{i-}^k and P_{i+}^k .

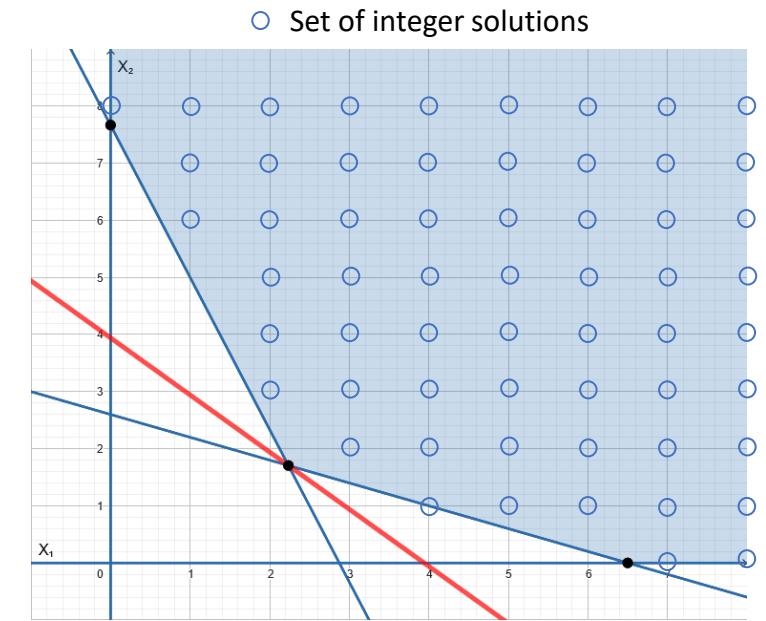


New trick: not exploring the unnecessary subproblems

The trick: considering a subproblem P^k , the LP relaxation give you x^k . Then for sure all the integer solution from P^k are going to be worst than $f(x^k)$.

In the case you found at least one solution, the best is x^* , and the score is $f(x^*)$.

Then, if you explore one subproblem P^k and the LP relaxation give you x^k , but $f(x^k)$ with worst than $f(x^*)$, no need to explore it, we prune.



Branch and Bound: “Divide and conquer”

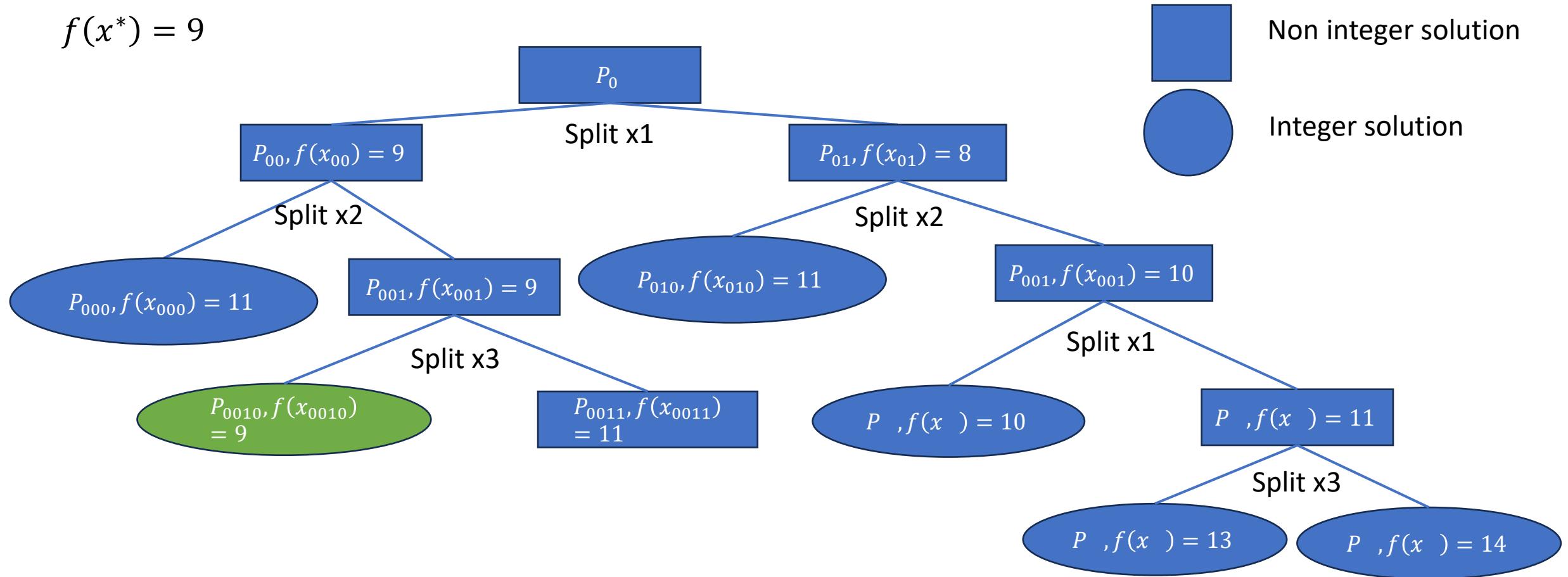
Consider a problem P^0 with objective of $\min_{x \in K} f(x)$, K^0 representing the constraints on the variables, f the minimization function; we consider an existing solution (the best for now) x^* leading the score $f(x^*)$.

Take one subproblem P^k , solve its relaxed version to have $x^k = (x_i^k)_{i \in [1, n]}$ with score $f(x^k)$.

- if the solution is integer, x^k is the solution of P^k , so it is one solution for P . We update the best solution $f(x^*)$ if the solution is improved $f(x^*) = \min(f(x^k), f(x^*))$.
- Else:
 - Conquer:
 - if $f(x^k) > f(x^*)$, P^k wont lead to a better solution than $f(x^*)$, so we stop the exploration on this problem, and prune.
 - Else, we do divide and split the variable set P^k .
 - Divide: we select one of the variable x^k such that x_i^k is not integer; the variable set K^k is split into $K_{i-}^k = K^k, x_i \leq \lfloor x_i^k \rfloor$ and $K_{i+}^k = K^k, x_i \geq \lceil x_i^k \rceil$ to define the problems P_{i-}^k and P_{i+}^k .

Branch and Bound: tree representation

$$f(x^*) = 9$$



Features of the B&B: *Branching strategy*

- *Branching strategy*: which non integer variable to select to split a problem into subproblems.
- *Search strategy*: which subproblem to explore the first.

Features of the B&B: *Branching strategy*

- *Branching strategy*: which non integer variable to select to split a problem into subproblems.
- *Search strategy*: which subproblem to explore the first.

Branch and Bound: “Divide and conquer”

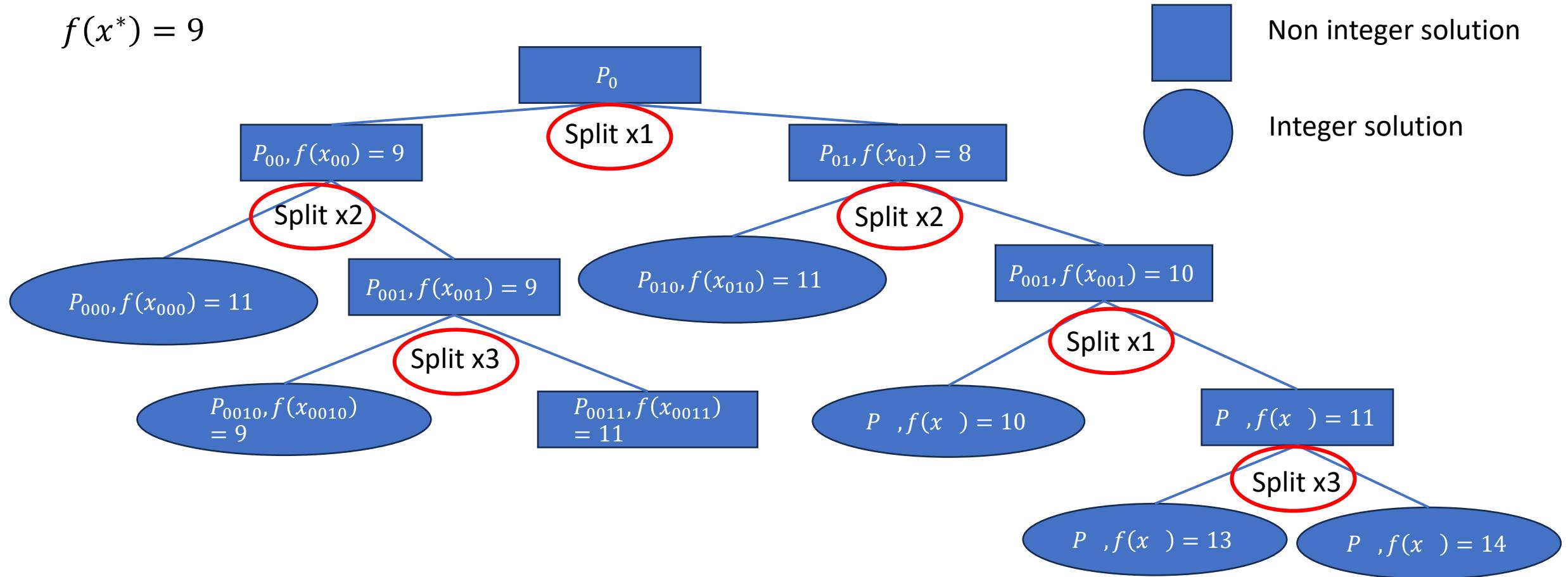
Consider a problem P^0 with objective of $\min_{x \in K} f(x)$, K^0 representing the constraints on the variables, f the minimization function; we consider an existing solution (the best for now) x^* leading the score $f(x^*)$.

Take one subproblem P^k , solve its relaxed version to have $x^k = (x_i^k)_{i \in [1, n]}$ with score $f(x^k)$.

- if the solution is integer, x^k is the solution of P^k , so it is one solution for P . We update the best solution $f(x^*)$ if the solution is improved $f(x^*) = \min(f(x^k), f(x^*))$.
- Else:
 - Conquer:
 - if $f(x^k) > f(x^*)$, P^k wont lead to a better solution than $f(x^*)$, so we stop the exploration on this problem, and prune.
 - Else, we do divide and split the variable set P^k .
 - Divide: we select one of the variable x^k such that x_i^k is not integer; the variable set K^k is split into $K_{i-}^k = K^k, x_i \leq \lfloor x_i^k \rfloor$ and $K_{i+}^k = K^k, x_i \geq \lceil x_i^k \rceil$ to define the problems P_{i-}^k and P_{i+}^k .

Branching strategy : tree representation

$$f(x^*) = 9$$



Features of the B&B: *Branching strategy*

- *Branching strategy*: which non integer variable to select to split a problem into subproblems.
→ one method: according to the solution x of the relaxed problem, select the variable the closest to 0.5 in the decimals.
- *Search strategy*: which subproblem to explore the first.

Features of the B&B: *Search strategy*

- *Branching strategy*: which non integer variable to select to split a problem into subproblems
- *Search strategy*: which subproblem to explore the first

Features of the B&B: *Search strategy*

- *Branching strategy*: which non integer variable to select to split a problem into subproblems
- *Search strategy*: which subproblem to explore the first

Branch and Bound: “Divide and conquer”

Consider a problem P^0 with objective of $\min_{x \in K} f(x)$, K^0 representing the constraints on the variables, f the minimization function; we consider an existing solution (the best for now) x^* leading the score $f(x^*)$.

Take one subproblem P^k , solve its relaxed version to have $x^k = (x_i^k)_{i \in [1, n]}$ with score $f(x^k)$.

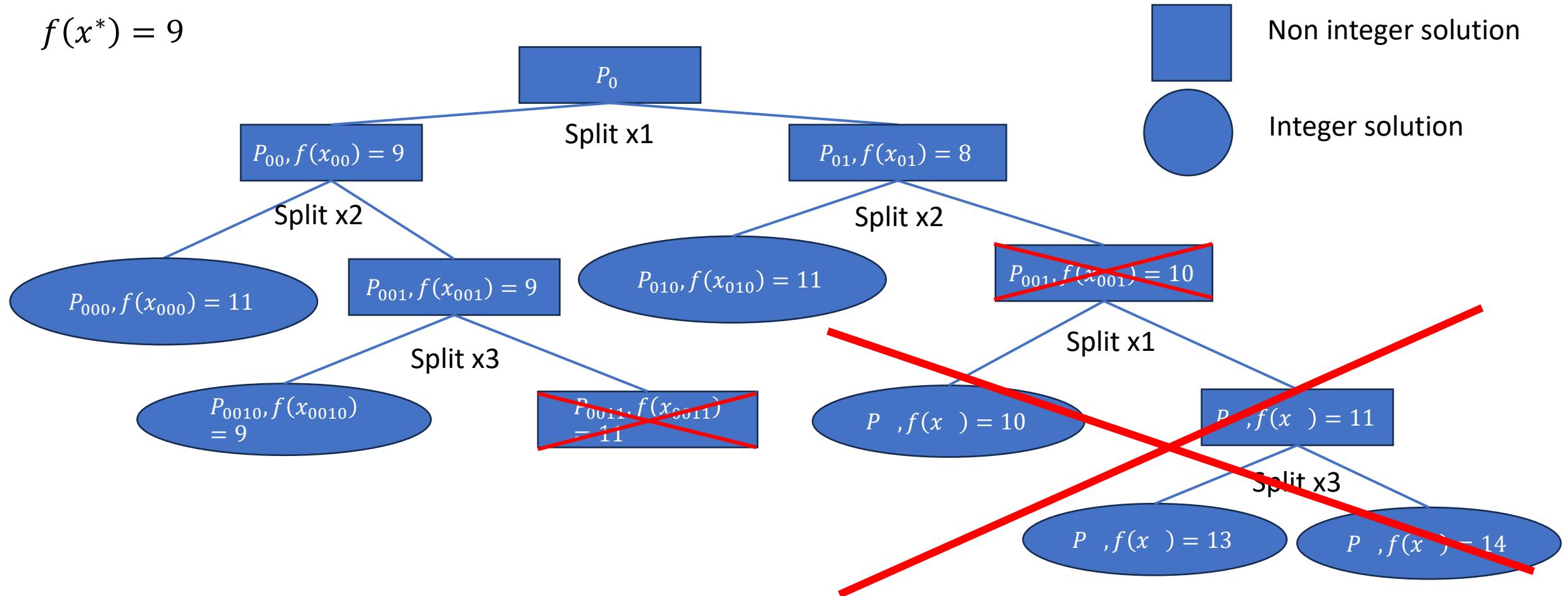
- if the solution is integer, x^k is the solution of P^k , so it is one solution for P . We update the best solution $f(x^*)$ if the solution is improved $f(x^*) = \min(f(x^k), f(x^*))$.
- Else:
 - Conquer:
 - if $f(x^k) > f(x^*)$, P^k wont lead to a better solution than $f(x^*)$, so we stop the exploration on this problem, and prune.
 - Else, we do divide and split the variable set P^k .
 - Divide: we select one of the variable x^k such that x_i^k is not integer; the variable set K^k is split into $K_{i-}^k = K^k, x_i \leq \lfloor x_i^k \rfloor$ and $K_{i+}^k = K^k, x_i \geq \lceil x_i^k \rceil$ to define the problems P_{i-}^k and P_{i+}^k .

Features of the B&B: *Search strategy*

- *Branching strategy*: which non integer variable to select to split a problem into subproblems
- *Search strategy*: which subproblem to explore the first
→ one method: always select the problem with the lowest lower-bound

Search strategy : tree representation

$$f(x^*) = 9$$



Example

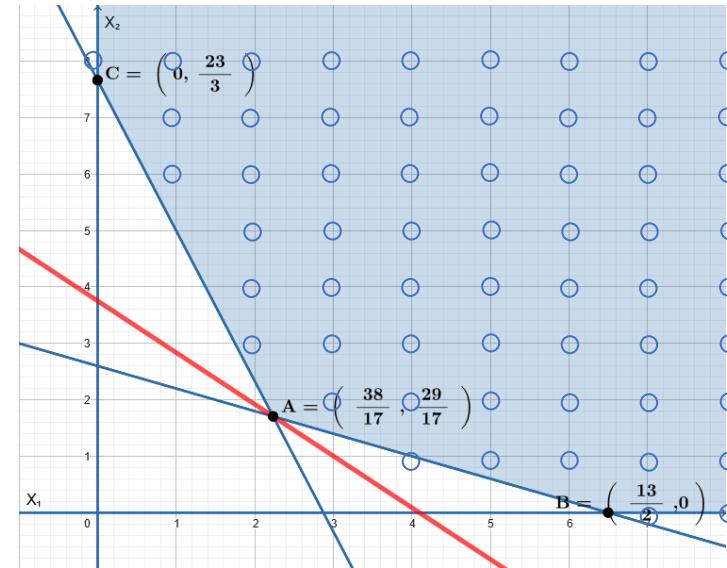
$$\text{minimize } z = 1.1x_1 + 1.2x_2$$

$$\text{subject to } 2x_1 + 5x_2 \geq 13$$

$$8x_1 + 3x_2 \geq 23$$

$$x_1, x_2 \geq 0$$

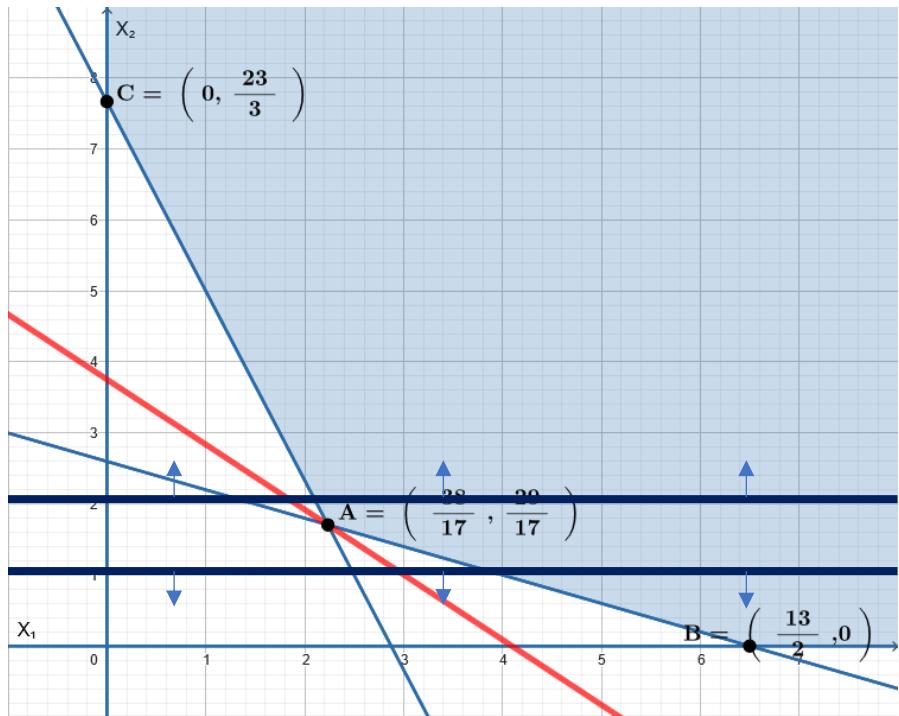
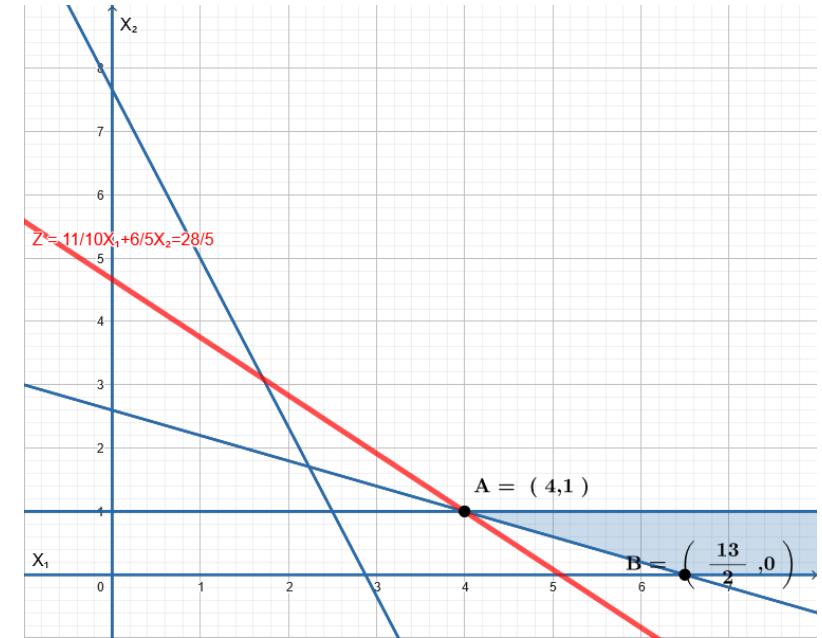
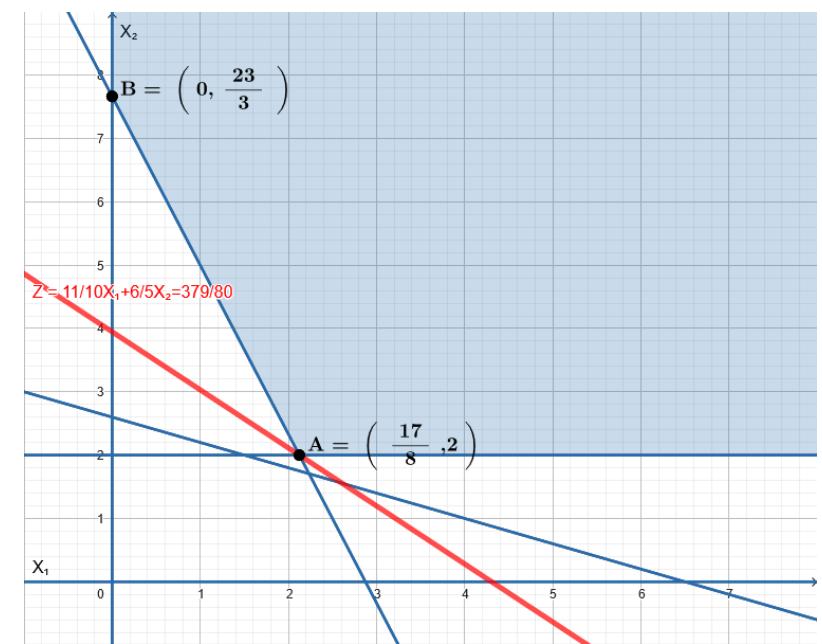
$$x_1, x_2 \in \mathbb{N}$$



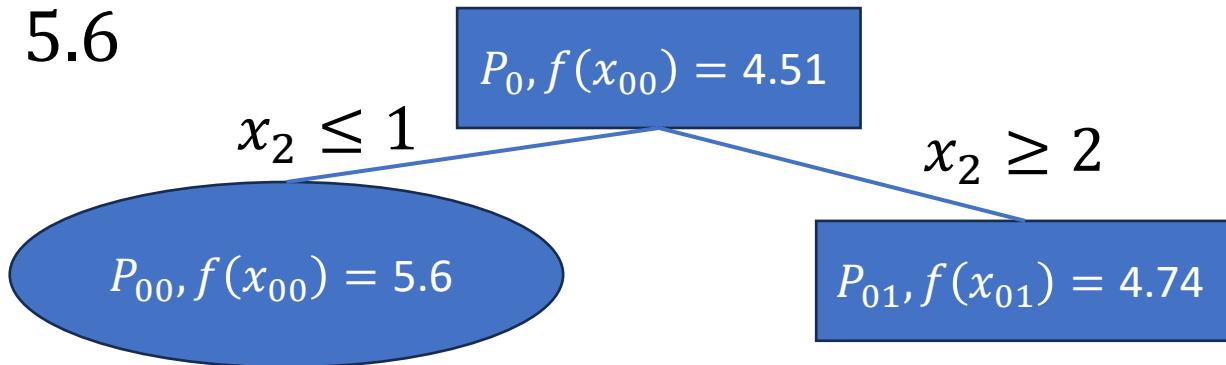
○ Set of integer solutions

Divide step 1

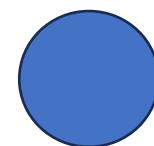
- The best solution of P_0 is $X1=2.24$, $X2=1.71$.
- Divide P_0 according to variable x_2 . Solve graphically the subproblems P_{00} and P_{01} .



$$f(x^*) = 5.6$$



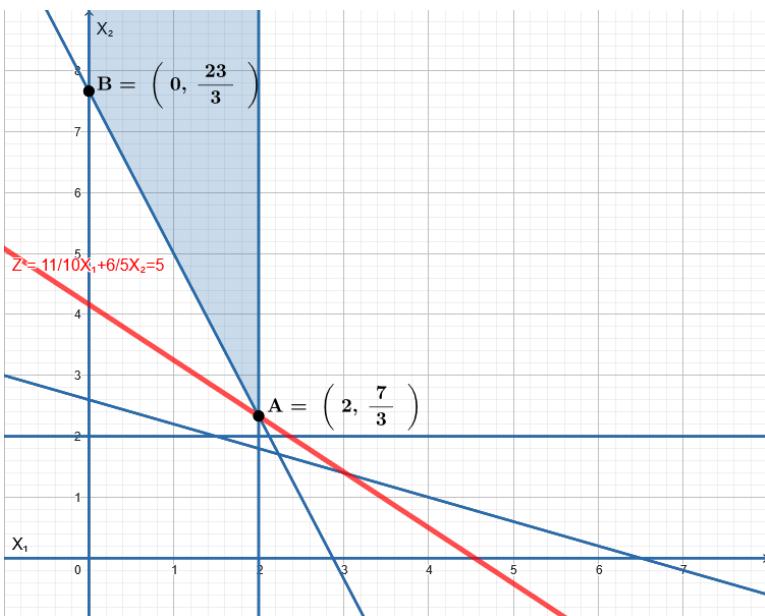
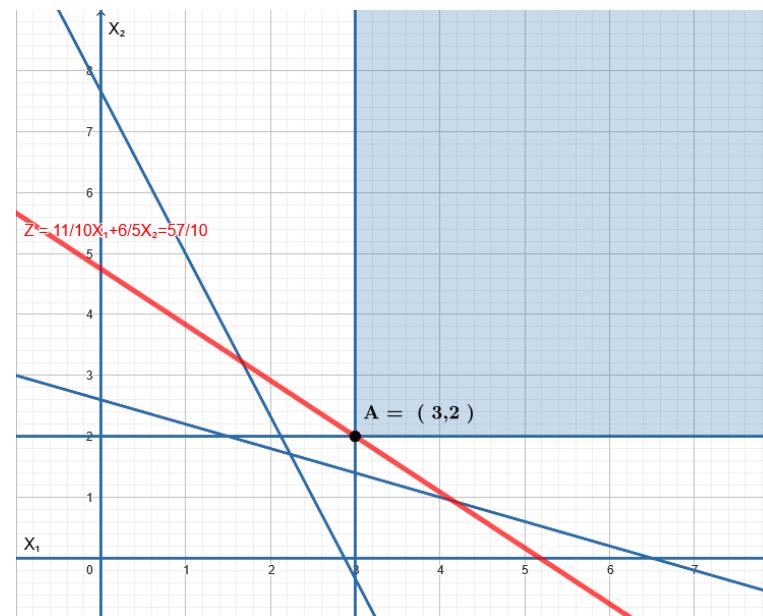
Non integer solution



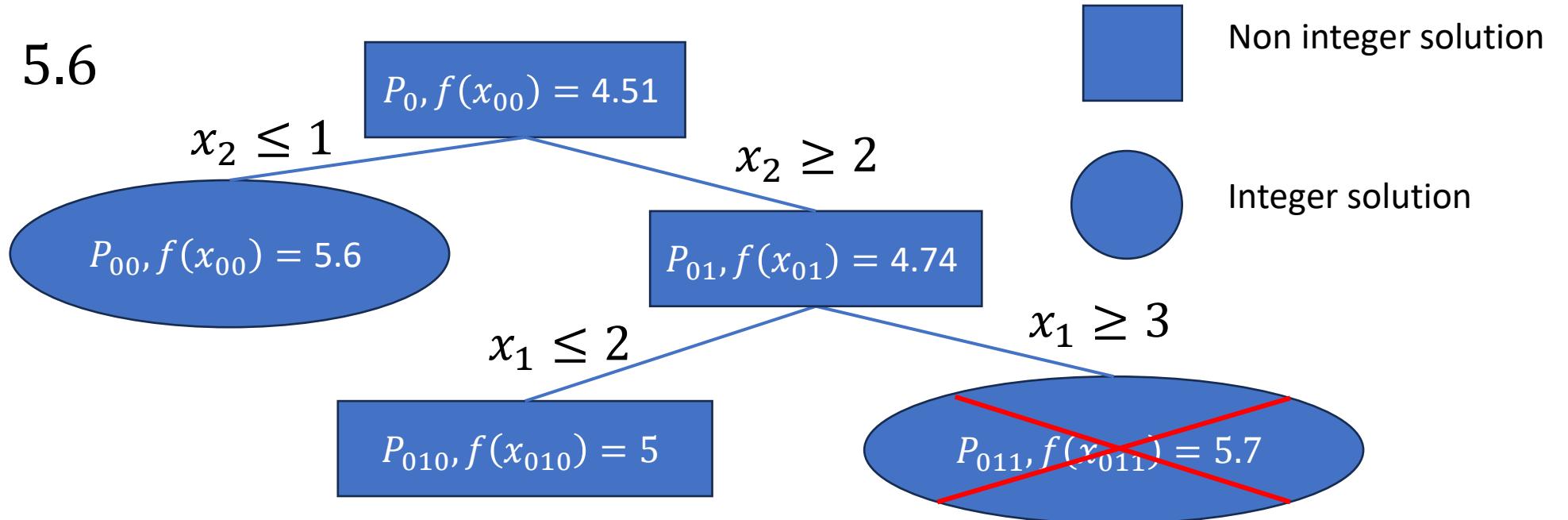
Integer solution

Divide step 2

- The best solution of P_{01} is $X_1=2.13$, $X_2=2$.
- Divide P_{01} according to variable x_1 . Solve graphically the subproblems P_{010} and P_{011} .

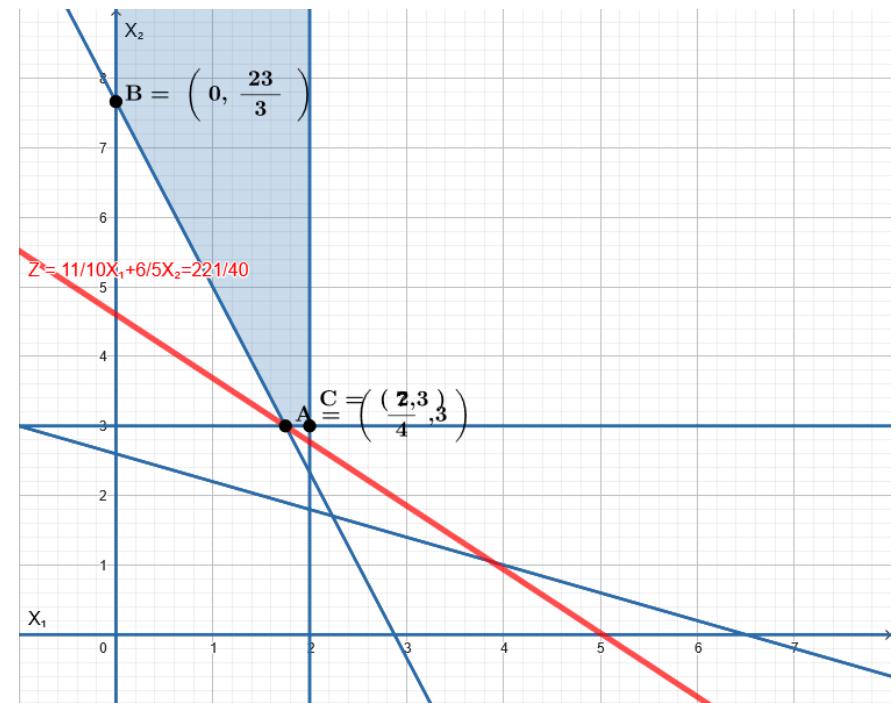


$$f(x^*) = 5.6$$

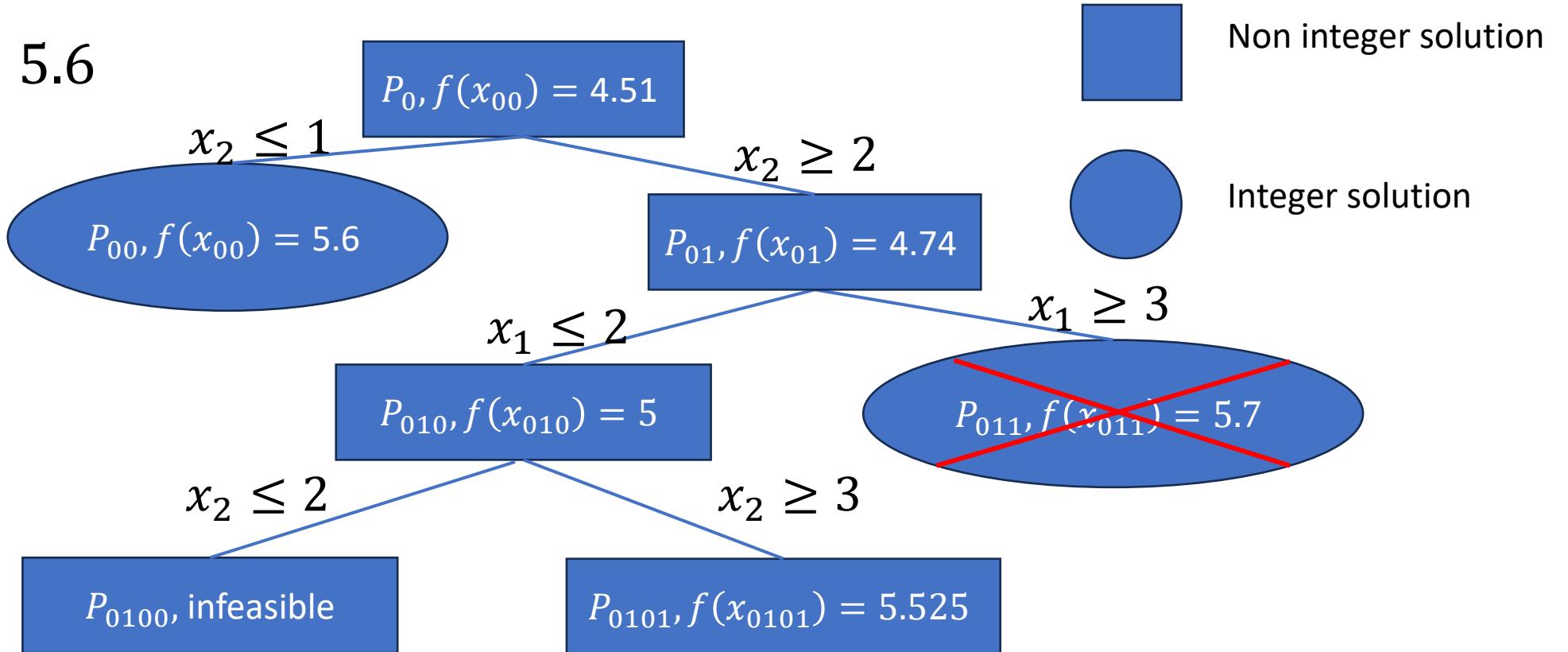


Divide step 3

- The best solution of P_{010} is $X_1=2, X_2=2.33$.
- Divide P_{011} according to variable x_2 . Solve graphically the subproblems.

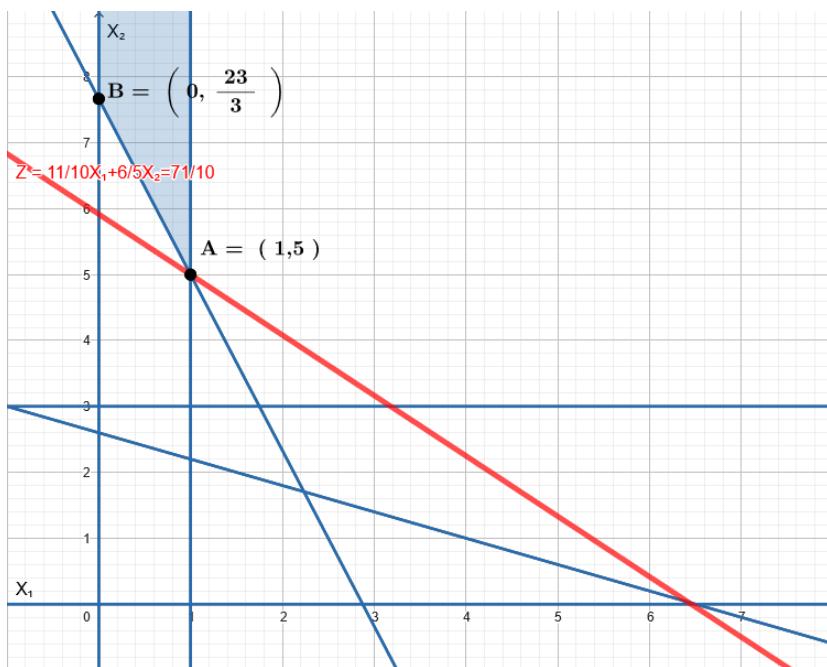
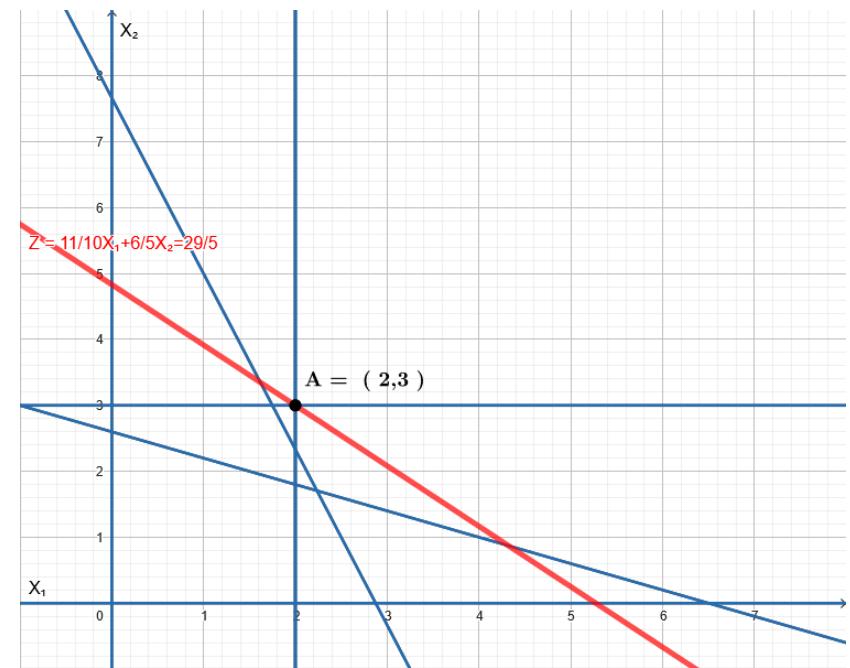


$$f(x^*) = 5.6$$

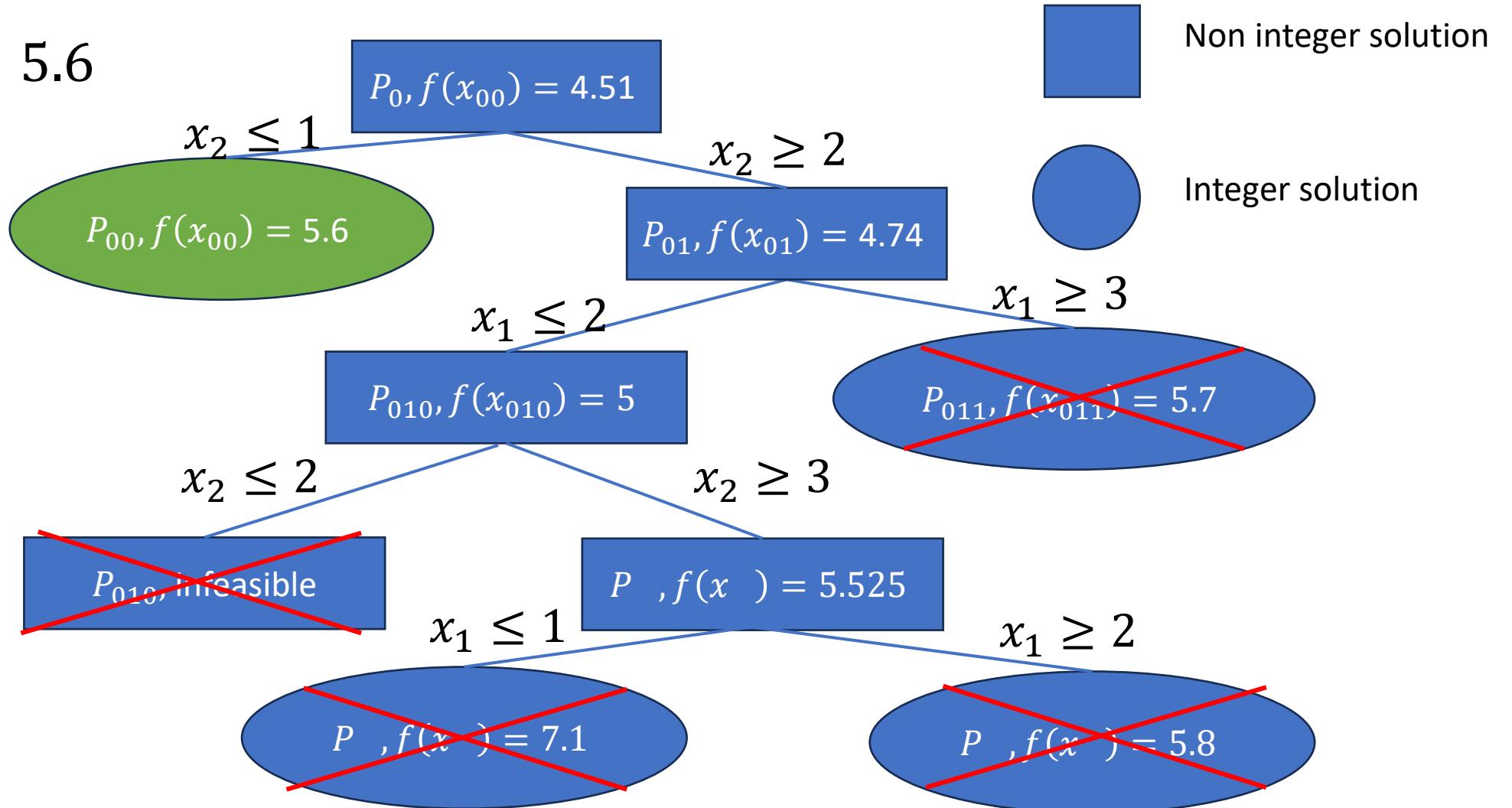


Divide step 4

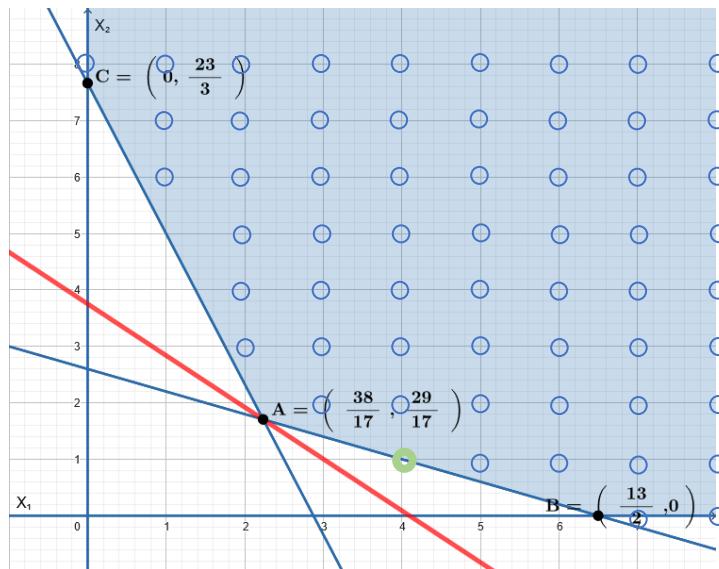
- The best solution is $X_1=1.75$, $X_2=3$.
- Divide P according to variable x_1 . Solve graphically the subproblems.



$$f(x^*) = 5.6$$



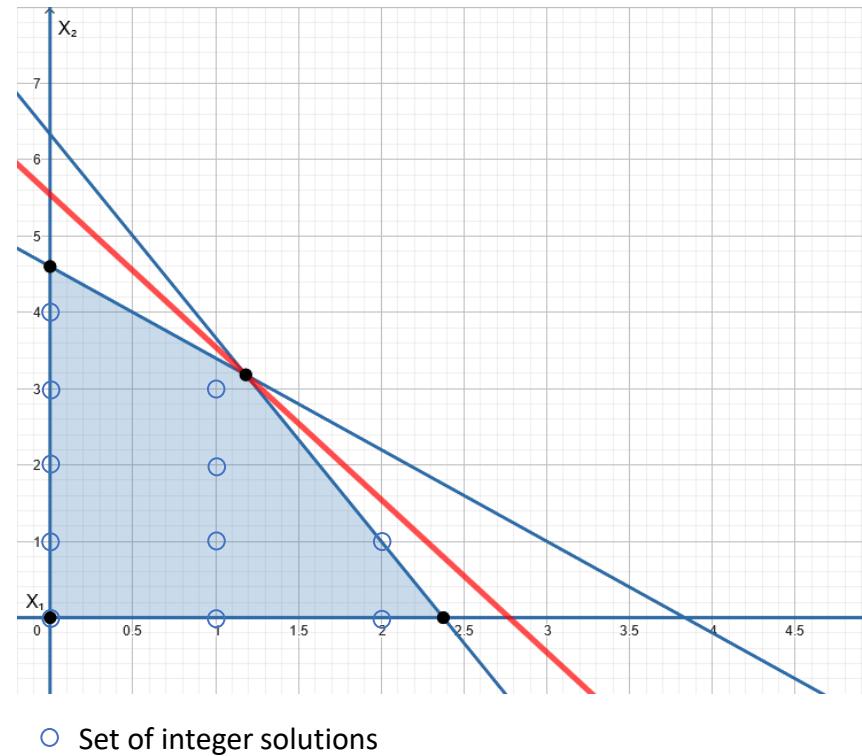
Optimal solution graphically



- Set of integer solutions
- Optimal solution

Example

maximize $z = 2x_1 + x_2$
subject to $6x_1 + 5x_2 \leq 23$
 $8x_1 + 3x_2 \leq 19$
 $x_1, x_2 \geq 0$
 $x_1, x_2 \in \mathbb{N}$



University of Luxembourg

Merci | Thank you | Danke

