
Master of Science in

Information and Computer

Sciences

University of Luxembourg

Integer Linear Programming: Introduction to
Branch & Bound

Dr. Gwen Maudet
 october 2025

ILP definition

min
𝑥

𝑐𝑇𝑥: 𝐴𝑥 ≤ b , 𝑥 ∈ ℕ𝑛, 𝐴 ∈ ℝ𝑚∗𝑛, 𝑏 ∈ ℝ𝑚

• 𝑥 = 𝑥𝑖 1≤𝑖≤𝑛: Set of integer variables

• 𝑐𝑇𝑥 = σ𝑖 𝑥𝑖𝑐𝑖: Minimization function

• 𝐴𝑥 ≤ 𝑏: 1 ≤ 𝑗 ≤ 𝑚, σ𝑖 𝐴𝑗,𝑖𝑥𝑖 ≤ 𝑏𝑗: Set of constraints

What are the applications of ILP?

Most of the problem are not LP but ILP problems

• Production planning

• Scheduling

• Networks

• …

Companies using solvers

Existing solvers

Commercial (need to pay )

• FICO Xpress (1986)

• CPLEX (1996)

• Gurobi (2008)

Open source

• SCIP (2002)

• HiGHs (2018)

Most of them are portable on
Python

LP and ILP

• Solving LP - simplex algorithm: polynomial complexity

• Solving ILP: NP-complete, exponential according to the dimensions of
the problem

Optimal solution Set of integer solutions

LP ILP

How to solve an ILP?

BIG IDEA:

• It exist methods to solve LP problems in polynomial time

• BUT not method to solve an ILP in polynomial time.

→We consider the “relaxed version” of the ILP, and solve the LP
problem, cross the fingers that the solution gives an integer sol.

• If not, then we divide the problem in subproblems that does not
include that value, and cross fingers again, etc..

𝑷𝟎 = 𝑷𝟎𝟎 ∪ 𝑷𝟎𝟏

𝑃0

𝑃00

𝑃01

THIS IS THE BRANCH AND BOUND

Branch and Bound: “Divide and conquer”
Consider a problem 𝑃0 with objective of 𝑚𝑖𝑛𝑥∈𝐾𝑓 𝑥 , 𝐾0 representing the
constraints on the variables, 𝑓 the minimization function; we consider an existing
solution (the best for now) 𝑥∗ leading the score 𝑓(𝑥∗).

Take one subproblem 𝑃𝑘, solve its relaxed version to have 𝑥𝑘 = 𝑥𝑖
𝑘

𝑖∈[1,𝑛]
 with

score 𝑓(𝑥𝑘).

• if the solution is integer, 𝑥𝑘 is the solution of 𝑃𝑘, so it is one solution for 𝑃. We
update the best solution 𝑓(𝑥∗) if the solution is improved 𝑓(𝑥∗) =
min(𝑓(𝑥𝑘), 𝑓(𝑥∗)).

• Else:
• Conquer:

• if 𝑓(𝑥𝑘) > 𝑓(𝑥∗), 𝑃𝑘 wont lead to a better solution than 𝑓(𝑥∗), so we stop the exploration on this
problem, and prune.

• Else, we do divide and split the variable set 𝑃𝑘.

• Divide: we select one of the variable 𝑥𝑘such that 𝑥𝑖
𝑘is not integer; the variable set 𝐾𝑘 is split

into 𝐾𝑖−
𝑘 = 𝐾𝑘 , 𝑥𝑖 ≤ 𝑥𝑖

𝑘 and Ki+
k = 𝐾𝑘, 𝑥𝑖 ≥ 𝑥𝑖

𝑘 to define the problems 𝑃𝑖−
𝑘 and𝑃𝑖+

𝑘 .

𝑃0

𝑃00

𝑃01

New trick: not exploring the unnecessary
suproblems
The trick: considering a subproblem 𝑃𝑘, the LP
relaxation give you 𝑥𝑘. Then for sure all the
integer solution from 𝑃𝑘 are going to be worst
than 𝑓 𝑥𝑘 .

In the case you found at least one solution, the
best is 𝑥∗, and the score is 𝑓(𝑥∗).

Then, if you explore one subproblem 𝑃𝑘 and the
LP relaxation give you 𝑥𝑘, but 𝑓 𝑥𝑘 with worst
than 𝑓(𝑥∗), no need to explore it, we prune.

Set of integer solutions

Branch and Bound: “Divide and conquer”
Consider a problem 𝑃0 with objective of 𝑚𝑖𝑛𝑥∈𝐾𝑓 𝑥 , 𝐾0 representing the
constraints on the variables, 𝑓 the minimization function; we consider an existing
solution (the best for now) 𝑥∗ leading the score 𝑓(𝑥∗).

Take one subproblem 𝑃𝑘, solve its relaxed version to have 𝑥𝑘 = 𝑥𝑖
𝑘

𝑖∈[1,𝑛]
 with

score 𝑓(𝑥𝑘).

• if the solution is integer, 𝑥𝑘 is the solution of 𝑃𝑘, so it is one solution for 𝑃. We
update the best solution 𝑓(𝑥∗) if the solution is improved 𝑓(𝑥∗) =
min(𝑓(𝑥𝑘), 𝑓(𝑥∗)).

• Else:
• Conquer:

• if 𝑓(𝑥𝑘) > 𝑓(𝑥∗), 𝑃𝑘 wont lead to a better solution than 𝑓(𝑥∗), so we stop the exploration on this
problem, and prune.

• Else, we do divide and split the variable set 𝑃𝑘.

• Divide: we select one of the variable 𝑥𝑘such that 𝑥𝑖
𝑘is not integer; the variable set 𝐾𝑘 is split

into 𝐾𝑖−
𝑘 = 𝐾𝑘 , 𝑥𝑖 ≤ 𝑥𝑖

𝑘 and Ki+
k = 𝐾𝑘, 𝑥𝑖 ≥ 𝑥𝑖

𝑘 to define the problems 𝑃𝑖−
𝑘 and𝑃𝑖+

𝑘 .

Branch and Bound: tree representation

𝑃0

𝑃00, 𝑓 𝑥00 = 9

Non integer solution

Integer solution

𝑃010, 𝑓 𝑥010 = 11𝑃001, 𝑓 𝑥001 = 9

𝑃0010, 𝑓 𝑥0010

= 9
𝑃0011, 𝑓 𝑥0011

= 11

𝑓 𝑥∗ = 9

Split x1
𝑃01, 𝑓 𝑥01 = 8

𝑃001, 𝑓 𝑥001 = 10

𝑃 , 𝑓 𝑥 = 10 𝑃 , 𝑓 𝑥 = 11

𝑃 , 𝑓 𝑥 = 13 𝑃 , 𝑓 𝑥 = 14

Split x2

Split x1

Split x3

𝑃000, 𝑓 𝑥000 = 11

Split x2

Split x3

Features of the B&B: Branching strategy

• Branching strategy: which non integer variable to select to split a
problem into subproblems.

• Search strategy: which subproblem to explore the first.

Features of the B&B: Branching strategy

• Branching strategy: which non integer variable to select to split a
problem into subproblems.

• Search strategy: which subproblem to explore the first.

Branch and Bound: “Divide and conquer”
Consider a problem 𝑃0 with objective of 𝑚𝑖𝑛𝑥∈𝐾𝑓 𝑥 , 𝐾0 representing the
constraints on the variables, 𝑓 the minimization function; we consider an existing
solution (the best for now) 𝑥∗ leading the score 𝑓(𝑥∗).

Take one subproblem 𝑃𝑘, solve its relaxed version to have 𝑥𝑘 = 𝑥𝑖
𝑘

𝑖∈[1,𝑛]
 with

score 𝑓(𝑥𝑘).

• if the solution is integer, 𝑥𝑘 is the solution of 𝑃𝑘, so it is one solution for 𝑃. We
update the best solution 𝑓(𝑥∗) if the solution is improved 𝑓(𝑥∗) =
min(𝑓(𝑥𝑘), 𝑓(𝑥∗)).

• Else:
• Conquer:

• if 𝑓(𝑥𝑘) > 𝑓(𝑥∗), 𝑃𝑘 wont lead to a better solution than 𝑓(𝑥∗), so we stop the exploration on this
problem, and prune.

• Else, we do divide and split the variable set 𝑃𝑘.

• Divide: we select one of the variable 𝑥𝑘such that 𝑥𝑖
𝑘is not integer; the variable set 𝐾𝑘 is split

into 𝐾𝑖−
𝑘 = 𝐾𝑘 , 𝑥𝑖 ≤ 𝑥𝑖

𝑘 and Ki+
k = 𝐾𝑘, 𝑥𝑖 ≥ 𝑥𝑖

𝑘 to define the problems 𝑃𝑖−
𝑘 and𝑃𝑖+

𝑘 .

Branching strategy : tree representation

𝑃0

𝑃00, 𝑓 𝑥00 = 9

Non integer solution

Integer solution

𝑃010, 𝑓 𝑥010 = 11𝑃001, 𝑓 𝑥001 = 9

𝑃0010, 𝑓 𝑥0010

= 9
𝑃0011, 𝑓 𝑥0011

= 11

𝑓 𝑥∗ = 9

Split x1
𝑃01, 𝑓 𝑥01 = 8

𝑃001, 𝑓 𝑥001 = 10

𝑃 , 𝑓 𝑥 = 10 𝑃 , 𝑓 𝑥 = 11

𝑃 , 𝑓 𝑥 = 13 𝑃 , 𝑓 𝑥 = 14

Split x2

Split x1

Split x3

𝑃000, 𝑓 𝑥000 = 11

Split x2

Split x3

Features of the B&B: Branching strategy

• Branching strategy: which non integer variable to select to split a
problem into subproblems.

→ one method: according to the solution 𝑥 of the relaxed problem,
select the variable the closest to 0.5 in the decimals.

• Search strategy: which subproblem to explore the first.

Features of the B&B: Search strategy

• Branching strategy: which non integer variable to select to split a
problem into subproblems

• Search strategy: which subproblem to explore the first

Features of the B&B: Search strategy

• Branching strategy: which non integer variable to select to split a
problem into subproblems

• Search strategy: which subproblem to explore the first

Branch and Bound: “Divide and conquer”
Consider a problem 𝑃0 with objective of 𝑚𝑖𝑛𝑥∈𝐾𝑓 𝑥 , 𝐾0 representing the
constraints on the variables, 𝑓 the minimization function; we consider an existing
solution (the best for now) 𝑥∗ leading the score 𝑓(𝑥∗).

Take one subproblem 𝑃𝑘, solve its relaxed version to have 𝑥𝑘 = 𝑥𝑖
𝑘

𝑖∈[1,𝑛]
 with

score 𝑓(𝑥𝑘).

• if the solution is integer, 𝑥𝑘 is the solution of 𝑃𝑘, so it is one solution for 𝑃. We
update the best solution 𝑓(𝑥∗) if the solution is improved 𝑓(𝑥∗) =
min(𝑓(𝑥𝑘), 𝑓(𝑥∗)).

• Else:
• Conquer:

• if 𝑓(𝑥𝑘) > 𝑓(𝑥∗), 𝑃𝑘 wont lead to a better solution than 𝑓(𝑥∗), so we stop the exploration on this
problem, and prune.

• Else, we do divide and split the variable set 𝑃𝑘.

• Divide: we select one of the variable 𝑥𝑘such that 𝑥𝑖
𝑘is not integer; the variable set 𝐾𝑘 is split

into 𝐾𝑖−
𝑘 = 𝐾𝑘 , 𝑥𝑖 ≤ 𝑥𝑖

𝑘 and Ki+
k = 𝐾𝑘, 𝑥𝑖 ≥ 𝑥𝑖

𝑘 to define the problems 𝑃𝑖−
𝑘 and𝑃𝑖+

𝑘 .

Features of the B&B: Search strategy

• Branching strategy: which non integer variable to select to split a
problem into subproblems

• Search strategy: which subproblem to explore the first

→one method: always select the problem with the lowest lower-bound

Search strategy : tree representation

𝑃0

𝑃00, 𝑓 𝑥00 = 9

Non integer solution

Integer solution

𝑃010, 𝑓 𝑥010 = 11𝑃001, 𝑓 𝑥001 = 9

𝑃0010, 𝑓 𝑥0010

= 9
𝑃0011, 𝑓 𝑥0011

= 11

𝑓 𝑥∗ = +∞

Split x1
𝑃01, 𝑓 𝑥01 = 8

𝑃001, 𝑓 𝑥001 = 10

𝑃 , 𝑓 𝑥 = 10 𝑃 , 𝑓 𝑥 = 11

𝑃 , 𝑓 𝑥 = 13 𝑃 , 𝑓 𝑥 = 14

Split x2

Split x1

Split x3

𝑃000, 𝑓 𝑥000 = 11

Split x2

Split x3

𝑓 𝑥∗ = 11𝑓 𝑥∗ = 9

Example
minimize z = 1.1x1 + 1.2x2

subject to 2x1 + 5x2 ≥ 13

 8x1 + 3x2 ≥ 23

 x1, x2 ≥ 0

 x1, x2 ∈

Set of integer solutions

Divide step 1

• The best solution of 𝑃0 is X1=2.24 , X2=1.71.

• Divide 𝑃0 according to variable 𝑥2. Solve graphically the subproblems
𝑃00 and 𝑃01.

𝑓(𝑥∗) = +∞ 𝑃0, 𝑓 𝑥00 = 4.51

Non integer solution

Integer solution

𝑓(𝑥∗) = 5.6 𝑃0, 𝑓 𝑥00 = 4.51

𝑃01, 𝑓 𝑥01 = 4.74

Non integer solution

Integer solution

𝑃00, 𝑓 𝑥00 = 5.6

𝑥2 ≤ 1 𝑥2 ≥ 2

Divide step 2

• The best solution of 𝑃01 is X1=2.13 , X2=2.

• Divide 𝑃01 according to variable 𝑥1. Solve graphically the subproblems
𝑃010 and 𝑃011.

Non integer solution

Integer solution

𝑃010, 𝑓 𝑥010 = 5 𝑃011, 𝑓 𝑥011 = 5.7

𝑓(𝑥∗) = 5.6 𝑃0, 𝑓 𝑥00 = 4.51

𝑃01, 𝑓 𝑥01 = 4.74𝑃00, 𝑓 𝑥00 = 5.6

𝑥2 ≤ 1 𝑥2 ≥ 2

𝑥1 ≤ 2 𝑥1 ≥ 3

Divide step 3

• The best solution of 𝑃010 is X1=2 , X2=2.33.

• Divide 𝑃011 according to variable 𝑥2. Solve graphically the
subproblems.

Non integer solution

Integer solution

𝑃010, 𝑓 𝑥010 = 5 𝑃011, 𝑓 𝑥011 = 5.7

𝑓(𝑥∗) = 5.6 𝑃0, 𝑓 𝑥00 = 4.51

𝑃01, 𝑓 𝑥01 = 4.74𝑃00, 𝑓 𝑥00 = 5.6

𝑃0101, 𝑓 𝑥0101 = 5.525𝑃0100, infeasible

𝑥2 ≤ 1 𝑥2 ≥ 2

𝑥1 ≤ 2 𝑥1 ≥ 3

𝑥2 ≤ 2 𝑥2 ≥ 3

Divide step 4

• The best solution is X1=1.75 , X2=3.

• Divide 𝑃 according to variable 𝑥1. Solve graphically the
subproblems.

Non integer solution

Integer solution

𝑃010, 𝑓 𝑥010 = 5 𝑃011, 𝑓 𝑥011 = 5.7

𝑓(𝑥∗) = 5.6 𝑃0, 𝑓 𝑥00 = 4.51

𝑃01, 𝑓 𝑥01 = 4.74𝑃00, 𝑓 𝑥00 = 5.6

𝑃 , 𝑓 𝑥 = 5.525𝑃010, infeasible

𝑥2 ≤ 1 𝑥2 ≥ 2

𝑥1 ≤ 2 𝑥1 ≥ 3

𝑥2 ≤ 2 𝑥2 ≥ 3

𝑃 , 𝑓 𝑥 = 7.1 𝑃 , 𝑓 𝑥 = 5.8

𝑥1 ≤ 1 𝑥1 ≥ 2

Optimal solution graphically

Set of integer solutions

Optimal solution

maximize z = 2x1 + x2

subject to 6x1 + 5x2 ≤ 23

 8x1 + 3x2 ≤ 19

 x1, x2 ≥ 0

 x1, x2 ∈

Set of integer solutions

Example

University of Luxembourg Merci | Thank you | Danke

	Slide 1
	Slide 2: ILP definition
	Slide 3: What are the applications of ILP?
	Slide 4: Companies using solvers
	Slide 5: Existing solvers
	Slide 6: LP and ILP
	Slide 7: How to solve an ILP?
	Slide 8
	Slide 9
	Slide 10: Branch and Bound: “Divide and conquer”
	Slide 11
	Slide 12: New trick: not exploring the unnecessary suproblems
	Slide 13: Branch and Bound: “Divide and conquer”
	Slide 14: Branch and Bound: tree representation
	Slide 15: Features of the B&B: Branching strategy
	Slide 16: Features of the B&B: Branching strategy
	Slide 17: Branch and Bound: “Divide and conquer”
	Slide 18: Branching strategy : tree representation
	Slide 19: Features of the B&B: Branching strategy
	Slide 20: Features of the B&B: Search strategy
	Slide 21: Features of the B&B: Search strategy
	Slide 22: Branch and Bound: “Divide and conquer”
	Slide 23: Features of the B&B: Search strategy
	Slide 24: Search strategy : tree representation
	Slide 25: Example
	Slide 26: Divide step 1
	Slide 27
	Slide 28
	Slide 29: Divide step 2
	Slide 30
	Slide 31: Divide step 3
	Slide 32
	Slide 33: Divide step 4
	Slide 34
	Slide 35: Optimal solution graphically
	Slide 36: Example
	Slide 37

